scispace - formally typeset
Journal ArticleDOI

Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results

TLDR
The reconstructed tumor from the breast cancer patient was found to have a higher oxy-deoxy hemoglobin concentration and also a higher oxygen saturation level than the background, indicating a ductal carcinoma that corresponds well to histology findings.
Abstract
Three-dimensional (3D), multiwavelength near-infrared tomography has the potential to provide new physiological information about biological tissue function and pathological transformation. Fast and reliable measurements of multiwavelength data from multiple planes over a region of interest, together with adequate model-based nonlinear image reconstruction, form the major components of successful estimation of internal optical properties of the region. These images can then be used to examine the concentration of chromophores such as hemoglobin, deoxyhemoglobin, water, and lipids that in turn can serve to identify and characterize abnormalities located deep within the domain. We introduce and discuss a 3D modeling method and image reconstruction algorithm that is currently in place. Reconstructed images of optical properties are presented from simulated data, measured phantoms, and clinical data acquired from a breast cancer patient. It is shown that, with a relatively fast 3D inversion algorithm, useful images of optical absorption and scatter can be calculated with good separation and localization in all cases. It is also shown that, by use of the calculated optical absorption over a range of wavelengths, the oxygen saturation distribution of a tissue under investigation can be deduced from oxygenated and deoxygenated hemoglobin maps. With this method the reconstructed tumor from the breast cancer patient was found to have a higher oxy-deoxy hemoglobin concentration and also a higher oxygen saturation level than the background, indicating a ductal carcinoma that corresponds well to histology findings.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Parametric estimation of 3D tubular structures for diffuse optical tomography

TL;DR: This work explores the use of diffuse optical tomography for the recovery of 3D tubular shapes representing vascular structures in breast tissue using a parametric level set method and develops a novel inter-slice regularization strategy to obtain global regularity.
Journal ArticleDOI

Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography.

TL;DR: This approach to spectral imaging and oximetry of the breast has the potential to efficiently exploit the high intrinsic contrast provided by hemoglobin in breast tissue and to contribute a useful tool in the detection, diagnosis, and monitoring of breast pathologies.
Journal ArticleDOI

Multispectral, non-contact diffuse optical tomography of healthy human finger joints.

TL;DR: Finger joints from healthy subjects were imaged using a non-contact, multispectral, continuous wave DOT system, recovering physiological parameters of oxygen saturation, total haemoglobin, water concentration and scatter amplitude to detect pathophysiological changes in inflamed RA joints.
Journal ArticleDOI

Targeting in photodynamic therapy and photo-imaging

TL;DR: For phototherapy and photodiagnosis to be successful, optical agents, delivery technologies and methods of analysis must be carefully matched to the pathophysiology of the disease being targeted.
Journal ArticleDOI

Parametric level set reconstruction methods for hyperspectral diffuse optical tomography

TL;DR: The PaLS method significantly reduces the number of unknowns relative to more traditional level-set reconstruction methods and has been show to be particularly well suited for ill-posed inverse problems such as the one of interest here.
References
More filters
Journal ArticleDOI

Optical tomography in medical imaging

TL;DR: A review of methods for the forward and inverse problems in optical tomography can be found in this paper, where the authors focus on the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction.
Journal ArticleDOI

Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation.

TL;DR: The cytochrome aa3 spectrum in vivo from the brains of rats after replacing the blood with a fluorocarbon substitute is obtained and an algorithm for calculating the changes in oxygenated and deoxygenated haemoglobin and oxygenated cy tochrome a a3 in tissue from changes in near IR absorption is constructed.
Journal ArticleDOI

Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement

TL;DR: It is found that DOT provides for localization and quantification of exogenous tissue chromophore concentrations and the use of ICG, an albumin bound absorbing dye in plasma, demonstrates the potential to differentiate disease based on the quantified enhancement of suspicious lesions.
Journal ArticleDOI

Imaging the body with diffuse optical tomography

TL;DR: The basic idea of DOT is introduced, the history of optical methods in medicine is reviewed, and a review of the tissue's optical properties, modes of operation for DOT, and the challenges which the development of DOT must overcome are detailed.
Journal ArticleDOI

A finite element approach for modeling photon transport in tissue.

TL;DR: A finite element method for deriving photon density inside an object, and photon flux at its boundary, assuming that the photon transport model is the diffusion approximation to the radiative transfer equation, is introduced herein.
Related Papers (5)