scispace - formally typeset
Journal ArticleDOI

Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results

TLDR
The reconstructed tumor from the breast cancer patient was found to have a higher oxy-deoxy hemoglobin concentration and also a higher oxygen saturation level than the background, indicating a ductal carcinoma that corresponds well to histology findings.
Abstract
Three-dimensional (3D), multiwavelength near-infrared tomography has the potential to provide new physiological information about biological tissue function and pathological transformation. Fast and reliable measurements of multiwavelength data from multiple planes over a region of interest, together with adequate model-based nonlinear image reconstruction, form the major components of successful estimation of internal optical properties of the region. These images can then be used to examine the concentration of chromophores such as hemoglobin, deoxyhemoglobin, water, and lipids that in turn can serve to identify and characterize abnormalities located deep within the domain. We introduce and discuss a 3D modeling method and image reconstruction algorithm that is currently in place. Reconstructed images of optical properties are presented from simulated data, measured phantoms, and clinical data acquired from a breast cancer patient. It is shown that, with a relatively fast 3D inversion algorithm, useful images of optical absorption and scatter can be calculated with good separation and localization in all cases. It is also shown that, by use of the calculated optical absorption over a range of wavelengths, the oxygen saturation distribution of a tissue under investigation can be deduced from oxygenated and deoxygenated hemoglobin maps. With this method the reconstructed tumor from the breast cancer patient was found to have a higher oxy-deoxy hemoglobin concentration and also a higher oxygen saturation level than the background, indicating a ductal carcinoma that corresponds well to histology findings.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Breast Deformation in Near Infrared Optical Tomography

TL;DR: In this article, a deformation model is presented to account for the change of shape and discuss implications in image reconstruction. But the model is not suitable for breast deformation in NIR tomography.
Proceedings ArticleDOI

Wavelength Optimization in Spectral Near Infrared Tomography

TL;DR: In this paper, a method is developed to show that instead of using data from the entire spectrum, only selected spectral bands are required to improve image reconstruction accuracy in spectral diffuse optical tomography.
Proceedings ArticleDOI

Reconstruction of Raman Spectra Using Diffusive Light Propagation in 3D

TL;DR: In this paper, the effect of the propagation of Raman signal through a rat tibia was investigated and the results showed a shift in the Raman Spectra of less than 1nm as compared to the original signal.
Proceedings ArticleDOI

In Vivo Three-dimensional Multi-spectral Diffuse Optical Tomography of Breast Cancer

TL;DR: In this paper, multi-spectral diffuse optical tomography was utilized for in vivo breast cancer imaging to reconstruct 3D map of chromophore concentrations and scattering directly from CW data.
Journal Article

Source intensity optimization in quantitative three-dimensional diffuse optical tomography

TL;DR: In this article, a method that optimizes the source intensity distribution in 3D diffuse optical tomography (DOT) was proposed to improve the quality of both absorption and scattering images.
References
More filters
Journal ArticleDOI

Optical tomography in medical imaging

TL;DR: A review of methods for the forward and inverse problems in optical tomography can be found in this paper, where the authors focus on the highly scattering case found in applications in medical imaging, and to the problem of absorption and scattering reconstruction.
Journal ArticleDOI

Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation.

TL;DR: The cytochrome aa3 spectrum in vivo from the brains of rats after replacing the blood with a fluorocarbon substitute is obtained and an algorithm for calculating the changes in oxygenated and deoxygenated haemoglobin and oxygenated cy tochrome a a3 in tissue from changes in near IR absorption is constructed.
Journal ArticleDOI

Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement

TL;DR: It is found that DOT provides for localization and quantification of exogenous tissue chromophore concentrations and the use of ICG, an albumin bound absorbing dye in plasma, demonstrates the potential to differentiate disease based on the quantified enhancement of suspicious lesions.
Journal ArticleDOI

Imaging the body with diffuse optical tomography

TL;DR: The basic idea of DOT is introduced, the history of optical methods in medicine is reviewed, and a review of the tissue's optical properties, modes of operation for DOT, and the challenges which the development of DOT must overcome are detailed.
Journal ArticleDOI

A finite element approach for modeling photon transport in tissue.

TL;DR: A finite element method for deriving photon density inside an object, and photon flux at its boundary, assuming that the photon transport model is the diffusion approximation to the radiative transfer equation, is introduced herein.
Related Papers (5)