scispace - formally typeset
Open AccessJournal ArticleDOI

MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information.

Sitao Wu, +1 more
- 01 Aug 2008 - 
- Vol. 72, Iss: 2, pp 547-556
TLDR
A new threading algorithm MUSTER is developed by extending the previous sequence profile–profile alignment method, PPA, which shows a better performance than using the conventional optimization methods based on the PROSUP database.
Abstract
We develop a new threading algorithm MUSTER by extending the previous sequence profile-profile alignment method, PPA. It combines various sequence and structure information into single-body terms which can be conveniently used in dynamic programming search: (1) sequence profiles; (2) secondary structures; (3) structure fragment profiles; (4) solvent accessibility; (5) dihedral torsion angles; (6) hydrophobic scoring matrix. The balance of the weighting parameters is optimized by a grading search based on the average TM-score of 111 training proteins which shows a better performance than using the conventional optimization methods based on the PROSUP database. The algorithm is tested on 500 nonhomologous proteins independent of the training sets. After removing the homologous templates with a sequence identity to the target >30%, in 224 cases, the first template alignment has the correct topology with a TM-score >0.5. Even with a more stringent cutoff by removing the templates with a sequence identity >20% or detectable by PSI-BLAST with an E-value 0.5. Dependent on the homology cutoffs, the average TM-score of the first threading alignments by MUSTER is 5.1-6.3% higher than that by PPA. This improvement is statistically significant by the Wilcoxon signed rank test with a P-value < 1.0 x 10(-13), which demonstrates the effect of additional structural information on the protein fold recognition. The MUSTER server is freely available to the academic community at http://zhang.bioinformatics.ku.edu/MUSTER.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

I-TASSER: a unified platform for automated protein structure and function prediction

TL;DR: The iterative threading assembly refinement (I-TASSER) server is an integrated platform for automated protein structure and function prediction based on the sequence- to-structure-to-function paradigm.
Journal ArticleDOI

Comparative Protein Structure Modeling Using MODELLER

TL;DR: This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications.
Journal ArticleDOI

Template-based protein structure modeling using the RaptorX web server

TL;DR: This protocol presents a community-wide web-based method using RaptorX (http://raptorx.uchicago.edu/) for protein secondary structure prediction, template-based tertiary structure modeling, alignment quality assessment and sophisticated probabilistic alignment sampling.
Journal ArticleDOI

Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

TL;DR: A novel program, QUARK, for template‐free protein structure prediction, which can successfully construct 3D models of correct folds in one‐third cases of short proteins up to 100 residues and outperformed the second and third best servers based on the cumulative Z‐score of global distance test‐total scores in the FM category.
References
More filters
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Book

The Nature of Statistical Learning Theory

TL;DR: Setting of the learning problem consistency of learning processes bounds on the rate of convergence ofLearning processes controlling the generalization ability of learning process constructing learning algorithms what is important in learning theory?
Journal ArticleDOI

A simple method for displaying the hydropathic character of a protein

TL;DR: A computer program that progressively evaluates the hydrophilicity and hydrophobicity of a protein along its amino acid sequence has been devised and its simplicity and its graphic nature make it a very useful tool for the evaluation of protein structures.
Related Papers (5)