scispace - formally typeset
Open AccessJournal ArticleDOI

Myelin 2',3'-cyclic nucleotide 3'-phosphodiesterase: active-site ligand binding and molecular conformation.

TLDR
A detailed picture of the CNPase active site during its catalytic cycle is provided, and a specific function for the previously uncharacterized N-terminal domain is suggested.
Abstract
The 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) is a highly abundant membrane-associated enzyme in the myelin sheath of the vertebrate nervous system. CNPase is a member of the 2H phosphoesterase family and catalyzes the formation of 2′-nucleotide products from 2′,3′-cyclic substrates; however, its physiological substrate and function remain unknown. It is likely that CNPase participates in RNA metabolism in the myelinating cell. We solved crystal structures of the phosphodiesterase domain of mouse CNPase, showing the binding mode of nucleotide ligands in the active site. The binding mode of the product 2′-AMP provides a detailed view of the reaction mechanism. Comparisons of CNPase crystal structures highlight flexible loops, which could play roles in substrate recognition; large differences in the active-site vicinity are observed when comparing more distant members of the 2H family. We also studied the full-length CNPase, showing its N-terminal domain is involved in RNA binding and dimerization. Our results provide a detailed picture of the CNPase active site during its catalytic cycle, and suggest a specific function for the previously uncharacterized N-terminal domain.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

J. Appl. Cryst.の発刊に際して

良二 上田
Journal ArticleDOI

Myelination of the nervous system: mechanisms and functions

TL;DR: Recent advances in the understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath are highlighted.
Journal ArticleDOI

Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules.

TL;DR: A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.
Journal ArticleDOI

Electron microscopy of myelin: Structure preservation by high-pressure freezing

TL;DR: Cryofixation has proven well suited to yield both, improved contrast and excellent preservation of structural detail of the axon/myelin-unit in healthy and mutant mice and can also be applied to other model organisms, including aquatic species.
References
More filters
Journal ArticleDOI

Coot: model-building tools for molecular graphics.

TL;DR: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics.
Journal ArticleDOI

AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading

TL;DR: AutoDock Vina achieves an approximately two orders of magnitude speed‐up compared with the molecular docking software previously developed in the lab, while also significantly improving the accuracy of the binding mode predictions, judging by tests on the training set used in AutoDock 4 development.
Journal ArticleDOI

Phaser crystallographic software

TL;DR: A description is given of Phaser-2.1: software for phasing macromolecular crystal structures by molecular replacement and single-wavelength anomalous dispersion phasing.
Journal ArticleDOI

MolProbity: all-atom structure validation for macromolecular crystallography

TL;DR: MolProbity structure validation will diagnose most local errors in macromolecular crystal structures and help to guide their correction.
Related Papers (5)