scispace - formally typeset
Journal ArticleDOI

Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection

Reads0
Chats0
TLDR
Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells and open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.
Abstract
Surface-enhanced Raman scattering (SERS)-based signal amplification and detection methods using plasmonic nanostructures have been widely investigated for imaging and sensing applications. However, SERS-based molecule detection strategies have not been practically useful because there is no straightforward method to synthesize and characterize highly sensitive SERS-active nanostructures with sufficiently high yield and efficiency, which results in an extremely low cross-section area in Raman sensing. Here, we report a high-yield synthetic method for SERS-active gold-silver core-shell nanodumbbells, where the gap between two nanoparticles and the Raman-dye position and environment can be engineered on the nanoscale. Atomic-force-microscope-correlated nano-Raman measurements of individual dumbbell structures demonstrate that Raman signals can be repeatedly detected from single-DNA-tethered nanodumbbells. These programmed nanostructure fabrication and single-DNA detection strategies open avenues for the high-yield synthesis of optically active smart nanoparticles and structurally reproducible nanostructure-based single-molecule detection and bioassays.

read more

Citations
More filters
Journal ArticleDOI

Poly-Adenine-Engineered Gold Nanogaps for SERS Nanostructures

TL;DR: It is found that the morphology of nanogap is dependent on the sequence, length, and surface-coating density of the unmodified oligonucleotide, and it is speculated that the formation of Nanogaps is dominated by stable self-assembled monolayers of un modified oligon nucleotides, which is supported by molecular dynamic simulation results.
Journal ArticleDOI

Protein Recognition by Phase Transition of Aptamer-Linked Polythiophene Single Nanowire.

TL;DR: A novel protein recognition platform is developed using aptamer-linked polythiophene nanowires that delivers the capability of a single conjugated polymer nanowire with phase-transition characteristics in response to selectivity and concentration.
Journal ArticleDOI

Mimicking an Atomically Thin “Vacuum Spacer” to Measure the Hamaker Constant between Graphene Oxide and Silica

TL;DR: In this article, the Hamaker constant between graphene oxide and silica was determined by mimicking a "vacuum spacer" in an atomic force microscopyforce study, and it was demonstrated that a 2D spacer is expected to yield an accurately defined separation, owing to the high atom density and strength in planar direction compared with other dimensional spacers.
Dissertation

Plasmonic Waveguides for Sub-wavelength Light Confinement

Chuan Zhong
TL;DR: In this paper, surface plasmon polaritons (SPP) are used to guide light at sub-wavelength scale in a heat-assisted magnetic recording (HAMR) system.
Journal ArticleDOI

Au@Ag nanoparticle sensor for sensitive and rapid detection of glucose

TL;DR: In this paper, a two-step seed-mediated synthesis of gold core@silver shell nanoparticles (Au@Ag NPs) was reported, which can serve as sensitive SERS sensors for clinical detection of blood sugar.
References
More filters
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

TL;DR: In this article, the first observation of single molecule Raman scattering was made using a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about $2.
Journal ArticleDOI

A DNA-based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials

TL;DR: A method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition is described.
Journal ArticleDOI

Organization of 'nanocrystal molecules' using DNA

TL;DR: A strategy for the synthesis of 'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions is described.
Journal ArticleDOI

Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study

TL;DR: In this article, the authors present an in-depth study of surface enhanced Raman scattering (SERS) enhancement factors and cross-sections, including several issues often overlooked, and demonstrate that SERS EFs as low as 107, as opposed to the figure of 1014 often claimed in the literature, are sufficient for SERS applications.
Related Papers (5)