scispace - formally typeset
Journal ArticleDOI

Nanoscale metal oxide-based heterojunctions for gas sensing: A review

TLDR
In this paper, the dominant electronic and chemical mechanisms that influence the performance of metal-oxide-based resistive-type gas sensors are discussed, including p-n and n-n potential barrier manipulation, n-p-n response type inversions, spillover effects, synergistic catalytic behavior, and microstructure enhancement.
Abstract
Metal oxide-based resistive-type gas sensors are solid-state devices which are widely used in a number of applications from health and safety to energy efficiency and emission control. Nanomaterials such as nanowires, nanorods, and nanoparticles have dominated the research focus in this field due to their large number of surface sites facilitating surface reactions. Previous studies have shown that incorporating two or more metal oxides to form a heterojunction interface can have drastic effects on gas sensor performance, especially the selectivity. Recently, these effects have been amplified by designing heterojunctions on the nano-scale. These designs have evolved from mixed commercial powders and bi-layer films to finely-tuned core–shell and hierarchical brush-like nanocomposites. This review details the various morphological classes currently available for nanostructured metal-oxide based heterojunctions and then presents the dominant electronic and chemical mechanisms that influence the performance of these materials as resistive-type gas sensors. Mechanisms explored include p–n and n–n potential barrier manipulation, n–p–n response type inversions, spill-over effects, synergistic catalytic behavior, and microstructure enhancement. Tables are presented summarizing these works specifically for SnO2, ZnO, TiO2, In2O3, Fe2O3, MoO3, Co3O4, and CdO-based nanocomposites. Recent developments are highlighted and likely future trends are explored.

read more

Citations
More filters
Journal ArticleDOI

Nanostructured Materials for Room-Temperature Gas Sensors

TL;DR: The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here and particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations.
Journal ArticleDOI

Room-temperature gas sensing of ZnO-based gas sensor: A review

TL;DR: In this paper, the room-temperature gas sensing properties of ZnO-based gas sensors are comprehensively reviewed, and more attention is particularly paid to the effective strategies that create room temperature gas sensing, mainly including surface modification, additive doping and light activation.
Journal ArticleDOI

Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene)

TL;DR: The Ti3C2Tx sensors successfully measured ethanol, methanol, acetone, and ammonia gas at room temperature and showed a p-type sensing behavior and the limit of detection of acetone gas was theoretically calculated to be about 9.27 ppm, presenting better performance than other 2D material-based sensors.
Journal ArticleDOI

Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature

TL;DR: In this paper, the authors highlight the designs and mechanisms of different SMONs with various patterns (e.g., nanoparticles, nanowires, nanosheets, nanorods, nanotubes, nanofilms, etc.) for gas sensors to detect various hazardous gases at room temperature.
Journal ArticleDOI

Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review

TL;DR: In this article, the synergistic effect achieved by combining these two mechanisms are examined, and the authors connect experimental evidence to conceptual mechanistic descriptions by examining adsorption processes, charge transfer, reaction mechanisms, morphology, and ambient gas interactions.
References
More filters
Journal ArticleDOI

Small molecule drug screening in Drosophila identifies the 5HT2A receptor as a feeding modulation target

TL;DR: This work used Drosophila melanogaster larvae to develop a high-throughput whole organism screen for drugs that modulate food intake and identified the serotonin (5-hydroxytryptamine or 5-HT) receptor antagonist metitepine as a potent anorectic drug.
Journal ArticleDOI

Metal oxide gas sensors: Sensitivity and influencing factors

TL;DR: A brief review of changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors: chemical components, surface-modification and microstructures of sensing layers, temperature and humidity.
Journal ArticleDOI

Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion

TL;DR: In this article, three major ways to utilize nanostructures for the design of solar energy conversion devices are discussed: (i) mimicking photosynthesis with donor−acceptor molecular assemblies or clusters, (ii) semiconductor assisted photocatalysis to produce fuels such as hydrogen, and (iii) nanostructure semiconductor based solar cells.
Journal ArticleDOI

Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview

TL;DR: In this article, high performance gas sensors prepared using p-type oxide semiconductors such as NiO, CuO, Cr2O3, Co3O4, and Mn3O3 were reviewed.
Journal ArticleDOI

Metal oxides for solid-state gas sensors: What determines our choice?

TL;DR: In this article, the analysis of various parameters of metal oxides and the search of criteria, which could be used during material selection for solid-state gas sensor applications, were the main objectives of this review.
Related Papers (5)