scispace - formally typeset
Journal ArticleDOI

Neural network modeling for near wall turbulent flow

TLDR
It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields.
About
This article is published in Journal of Computational Physics.The article was published on 2002-10-10. It has received 338 citations till now. The article focuses on the topics: Artificial neural network & Turbulence modeling.

read more

Citations
More filters
Journal ArticleDOI

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

TL;DR: In this article, the authors introduce physics-informed neural networks, which are trained to solve supervised learning tasks while respecting any given laws of physics described by general nonlinear partial differential equations.
Journal ArticleDOI

Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

TL;DR: This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data and proposes a novel neural network architecture which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropic tensor.
Journal ArticleDOI

Machine Learning for Fluid Mechanics

TL;DR: An overview of machine learning for fluid mechanics can be found in this article, where the strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation.
Journal ArticleDOI

Deep learning for universal linear embeddings of nonlinear dynamics.

TL;DR: It is often advantageous to transform a strongly nonlinear system into a linear one in order to simplify its analysis for prediction and control, so the authors combine dynamical systems with deep learning to identify these hard-to-find transformations.
Book

Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

TL;DR: In this paper, the authors bring together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science, and highlight many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy.
References
More filters
Book ChapterDOI

Neural Networks for Pattern Recognition

TL;DR: The chapter discusses two important directions of research to improve learning algorithms: the dynamic node generation, which is used by the cascade correlation algorithm; and designing learning algorithms where the choice of parameters is not an issue.
Book

Data Reduction and Error Analysis for the Physical Sciences

TL;DR: In this paper, Monte Carlo techniques are used to fit dependent and independent variables least squares fit to a polynomial least-squares fit to an arbitrary function fitting composite peaks direct application of the maximum likelihood.
Journal ArticleDOI

Data Reduction and Error Analysis for the Physical Sciences.

TL;DR: Numerical methods matrices graphs and tables histograms and graphs computer routines in Pascal and Monte Carlo techniques dependent and independent variables least-squares fit to a polynomial least-square fit to an arbitrary function fitting composite peaks direct application of the maximum likelihood.
Journal ArticleDOI

Turbulence statistics in fully developed channel flow at low reynolds number

TL;DR: In this article, a direct numerical simulation of a turbulent channel flow is performed, where the unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points.
Related Papers (5)