scispace - formally typeset
Journal ArticleDOI

New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light

Kazuhiko Maeda and, +1 more
- 15 May 2007 - 
- Vol. 111, Iss: 22, pp 7851-7861
TLDR
In this article, the development of visible-light-driven photocatalysts focusing on the refinement of non-oxide-type photocatalyst such as (oxy)nitrides and oxysulfides is discussed.
Abstract
Overall water splitting to form hydrogen and oxygen over a heterogeneous photocatalyst using solar energy is a promising process for clean and recyclable hydrogen production in large-scale. In recent years, numerous attempts have been made for the development of photocatalysts that work under visible-light irradiation to efficiently utilize solar energy. This article presents recent research progress in the development of visible-light-driven photocatalysts, focusing on the refinement of non-oxide-type photocatalysts such as (oxy)nitrides and oxysulfides.

read more

Citations
More filters
Journal ArticleDOI

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Journal ArticleDOI

Heterogeneous photocatalyst materials for water splitting

TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Journal ArticleDOI

Semiconductor-based Photocatalytic Hydrogen Generation

TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Journal ArticleDOI

Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting

TL;DR: This introductory review covers the fundamental aspects of photocatalytic and photoelectrochemical water splitting and recent advances in the water splitting reaction under visible light will be presented with a focus on non-oxide semiconductor materials to give an overview of the various problems and solutions.
Journal ArticleDOI

Photocatalytic reduction of CO2 on TiO2 and other semiconductors.

TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
References
More filters
Journal ArticleDOI

Electrochemical Photolysis of Water at a Semiconductor Electrode

TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Journal ArticleDOI

Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides

TL;DR: Film and powders of TiO2-x Nx have revealed an improvement over titanium dioxide (TiO2) under visible light in optical absorption and photocatalytic activity such as photodegradations of methylene blue and gaseous acetaldehyde and hydrophilicity of the film surface.
Journal ArticleDOI

A homochiral metal-organic porous material for enantioselective separation and catalysis

TL;DR: The synthesis of a homochiral metal–organic porous material that allows the enantioselective inclusion of metal complexes in its pores and catalyses a transesterification reaction in an enantiOSElective manner is reported.
Journal ArticleDOI

Photocatalyst releasing hydrogen from water

TL;DR: An advance in the catalysis of the overall splitting of water under visible light is described: the new catalyst is a solid solution of gallium and zinc nitrogen oxide, modified with nanoparticles of a mixed oxide of rhodium and chromium, which functions as a promising and efficient photocatalyst in promoting the evolution of hydrogen gas.
Journal ArticleDOI

Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen

TL;DR: In this article, the authors focus on the photodriven conversion of liquid water to gaseous hydrogen and oxygen, a process similar to that of biological photosynthesis, using sunlight to drive a thermodynamically uphill reaction of an abundant material to produce fuel.
Related Papers (5)