scispace - formally typeset
Journal ArticleDOI

Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants

TLDR
A wide diversity of nitrogen-fixing bacterial species belonging to most phyla of the Bacteria domain have the capacity to colonize the rhizosphere and to interact with plants.
Abstract
Nitrogen is generally considered one of the major limiting nutrients in plant growth. The biological process responsible for reduction of molecular nitrogen into ammonia is referred to as nitrogen fixation. A wide diversity of nitrogen-fixing bacterial species belonging to most phyla of the Bacteria domain have the capacity to colonize the rhizosphere and to interact with plants. Leguminous and actinorhizal plants can obtain their nitrogen by association with rhizobia or Frankia via differentiation on their respective host plants of a specialized organ, the root nodule. Other symbiotic associations involve heterocystous cyanobacteria, while increasing numbers of nitrogen-fixing species have been identified as colonizing the root surface and, in some cases, the root interior of a variety of cereal crops and pasture grasses. Basic and advanced aspects of these associations are covered in this review.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms

TL;DR: Features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen.
Journal ArticleDOI

Rhizosphere microbiome assemblage is affected by plant development.

TL;DR: It is surmised that plants secrete blends of compounds and specific phytochemicals in the root exudates that are differentially produced at distinct stages of development to help orchestrate rhizosphere microbiome assemblage.
Journal ArticleDOI

Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance

TL;DR: In this article, the authors evaluate competitive and mutualistic interactions between plants and microorganisms and analyse the ecological consequences of these interactions in the rhizosphere, and they find that despite strong competition between roots and micro-organisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the root network.
Journal ArticleDOI

Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

TL;DR: There is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of thePGPR as biofertilizer—thus the importance of nano-encapsulation technology in improving the efficacy of PGPR is highlighted.
Journal ArticleDOI

The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments.

TL;DR: The key mechanisms involved in plant stress tolerance and the effectiveness of microbial inoculation for enhancing plant growth under stress conditions have been discussed at length in this review.
References
More filters
Journal ArticleDOI

Rhizobial and Actinorhizal Symbioses: What Are the Shared Features?

TL;DR: This review discusses the recent progress in research on endophytic symbioses involving plant roots, special attention is given to nitrogen-fixing symbiotic interactions, and the current knowledge of nodule formation and function is summarized.
Journal ArticleDOI

Rhizobium nod factor perception and signalling.

TL;DR: Biological nitrogen fixation is a process that can only be performed by certain prokaryotes and in some cases, such bacteria are able to fix nitrogen in a symbiotic relationship with plants.
Book ChapterDOI

Cyanobacteria in Symbiosis

TL;DR: Cyanolichens: Carbon Metabolism K. Palmqvist, and Cyanobacterial Diversity and Specificity in Plant Symbioses U.N. Nilsson.
Book

Biology of the nitrogen cycle

TL;DR: This paper presents a meta-analyses of the stationary phase of the determinants of infectious disease in rats and shows clear patterns of decline in the number of immune checkpoints and in the numbers of checkpoints checked for disease progression.