scispace - formally typeset
Journal ArticleDOI

Nutrient Limitation of Net Primary Production in Marine Ecosystems

Robert W. Howarth
- 01 Jan 1988 - 
- Vol. 19, Iss: 1, pp 89-110
Reads0
Chats0
TLDR
There is a feeling among many limnologists and environmental engineers who study lakes that marine ecosystems also probably are phosphorus limited, and environmental management agencies often assume that phosphorus limitation in marine ecosystems is the rule.
Abstract
The question of nutrient limitation of primary production in estuaries and other marine ecosystems has engendered a great deal of debate. Although nitrogen is often named as the primary limiting nutrient in seawater (3, 17-19, 50, 52, 55, 61, 76, 80), this is by no means universally accepted. Many workers have argued that phosphorus is limiting (58, 71), that both nitrogen and phosphorus can simultaneously be limiting (9), or that primary production can switch seasonally from being nitrogen-limited to phosphorus-limited (6, 46). Others argue that nutrients are not limiting at all in many marine ecosystems, including highly oligotrophic waters (15). To some extent these disagreements result from poor communication due to different definitions of nutrient limitation. Considerable argument also occurs over the various methods and approaches used to estimate nutrient limitation. Limnologists in particular have tended to be critical of the methods often used to study nutrient limitation in marine ecosystems (23). Nutrient limitation in lakes has historically received more study than that in estuaries, and most mesotrophic and eutrophic north-temperate lakes are phosphorus limited (8, 62, 63, 66, 81). Thus, there is a feeling among many limnologists and environmental engineers who study lakes that marine ecosystems also probably are phosphorus limited. Lacking strong mechanistic arguments to explain why nutrient limitation might be different in estuaries than in lakes, environmental management agencies often assume that phosphorus limitation in marine ecosystems is the rule.

read more

Citations
More filters
Journal ArticleDOI

Nutrients limiting the algal growth potential (AGP) in the Po River plume and an adjacent area, northwest Adriatic Sea: enrichment bioassays with the test algae Nitzschia closterium and Thalassiosira pseudonana

TL;DR: Comparison with published results suggests that the roles of iron and silicon in AGP limitation have increased during the past three decades, and could become even more important if eutrophication in the Adriatic Sea continues to increase.
Dissertation

Factors limiting growth and production of tropical seagrasses: nutrient dynamics in Indonesian seagrass beds

TL;DR: Both biogeochemical properties of the sediment type and the degree of influence from terrigenous run-off were found to be important factors affecting the availability of nutrients to seagrass growth and determining the response in morphology, biomass and chemical composition of the seagRass material.
Journal ArticleDOI

Individual behavior drives ecosystem function and the impacts of harvest

TL;DR: Findings show that movement behavior at the scale of the individual can have crucial repercussions for the functioning of an entire ecosystem, proving an important challenge to the species-centric definition of biodiversity if the conservation and management of ecosystem function is a primary goal.
Journal ArticleDOI

Aquatic metabolism short-term response to the flood pulse in a Mediterranean floodplain

TL;DR: The role of the Ebro floodplain lakes as sources or sinks of C is complex and relative to the time scale investigated, depending strongly on the river discharge dynamics and the transport of limiting nutrients (phosphorus).
Journal ArticleDOI

Global patterns in phytoplankton biomass and community size structure in relation to macronutrients in the open ocean

TL;DR: Mousing et al. as discussed by the authors examined a global dataset (n 5 262) where phytoplankton community structure and biomass are related to ambient concentrations of dissolved inorganic nitrogen (DIN), phosphate (P), and silicate.
References
More filters
Journal ArticleDOI

Particulate organic matter flux and planktonic new production in the deep ocean

TL;DR: The primary production in the oceans results from allochthonous nutrient inputs to the euphotic zone (new production) and from nutrient recycling in the surface waters (regenerated production) as discussed by the authors.
Journal ArticleDOI

Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment

TL;DR: Removal of phosphate from detergents is not likely to slow the eutrophication of coastal marine waters, and its replacement with nitrogen-containing nitrilotriacetic acid may worsen the situation.
Journal ArticleDOI

Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment1

TL;DR: It is concluded that the extent and severity of N limitation in the marine environment remain an open question, despite the fact that by the late seventies the evidence for P limitation had become so great that phosphorus control was recommended as the legislated basis for controlling eutrophication in North American and European inland waters.
Related Papers (5)