scispace - formally typeset
Open AccessProceedings Article

OBPRM: an obstacle-based PRM for 3D workspaces

TLDR
This paper presents a new class of randomized path planning methods, known as Probabilistic Roadmap Methods (prms), which use randomization to construct a graph of representative paths in C-space whose vertices correspond to collision-free con gurations of the robot.
Abstract
Recently, a new class of randomized path planning methods, known as Probabilistic Roadmap Methods (prms) have shown great potential for solving complicated high-dimensional problems. prms use randomization (usually during preprocessing) to construct a graph of representative paths in C-space (a roadmap) whose vertices correspond to collision-free con gurations of the robot and in which two vertices are connected by an edge if a path between the two corresponding con gurations can be found by a local planning method.

read more

Citations
More filters
MonographDOI

Planning Algorithms: Introductory Material

TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Book

Principles of Robot Motion: Theory, Algorithms, and Implementations

TL;DR: In this paper, the mathematical underpinnings of robot motion are discussed and a text that makes the low-level details of implementation to high-level algorithmic concepts is presented.
Journal ArticleDOI

The Open Motion Planning Library

TL;DR: The open motion planning library is a new library for sampling-based motion planning, which contains implementations of many state-of-the-art planning algorithms, and it can be conveniently interfaced with other software components.
Proceedings ArticleDOI

Path planning using lazy PRM

TL;DR: The overall theme of the algorithm, called Lazy PRM, is to minimize the number of collision checks performed during planning and hence minimize the running time of the planner.
Journal ArticleDOI

Randomized Kinodynamic Motion Planning with Moving Obstacles

TL;DR: A detailed analysis of the planner's convergence rate shows that, if the state×time space satisfies a geometric property called expansiveness, then a slightly idealized version of the implemented planner is guaranteed to find a trajectory when one exists, with probability quickly converging to 1, as the number of milestones increases.
References
More filters
Proceedings ArticleDOI

Path planning for everyday robotics with SANDROS

TL;DR: The integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations creates a single system that allows the path to be computed, simulated, and then executed on the physical robot.