scispace - formally typeset
Open AccessJournal ArticleDOI

Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing

Reads0
Chats0
TLDR
In this article, the experimental observation of keyhole-mode laser melting in a laser powder-bed fusion additive manufacturing setting for 316L stainless steel is presented, and the conditions required to transition from conduction controlled melting to keyholemode melting are identified.
About
This article is published in Journal of Materials Processing Technology.The article was published on 2014-12-01 and is currently open access. It has received 981 citations till now. The article focuses on the topics: Selective laser melting & Selective laser sintering.

read more

Citations
More filters
Journal ArticleDOI

Additive manufacturing of metallic components – Process, structure and properties

TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.
Journal ArticleDOI

The metallurgy and processing science of metal additive manufacturing

TL;DR: In this article, a review of additive manufacturing (AM) techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy.
Journal ArticleDOI

Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones

TL;DR: In this paper, the effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel was demonstrated. And the results were validated against the experiments and the sensitivity to laser absorptivity was discussed.
Journal ArticleDOI

Additively manufactured hierarchical stainless steels with high strength and ductility

TL;DR: The potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications is demonstrated, with austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibiting a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels.
Journal ArticleDOI

A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties

TL;DR: In this article, the state of the art in selective laser sintering/melting (SLS/SLM) processing of aluminium powders is reviewed from different perspectives, including powder metallurgy (P/M), pulsed electric current (PECS), and laser welding of aluminium alloys.
References
More filters
Journal ArticleDOI

Laser additive manufacturing of metallic components: materials, processes and mechanisms

TL;DR: Additive manufacturing implies layer by layer shaping and consolidation of powder feedstock to arbitrary configurations, normally using a computer controlled laser as discussed by the authors, which is based on a novel materials incremental manufacturing philosophy.
Book

Laser Processing and Chemistry

TL;DR: In this paper, the authors provide an overview and fundamentals of Lasers in Medicine, Biotechnology and Arts: Lasers In Medicine and Biotechnology, Restoration and Conservation of Artworks.
Journal ArticleDOI

Software tools for quantification of X-ray microtomography at the UGCT

TL;DR: In this paper, the authors discuss the software tools for reconstruction and analysis of tomographic data that are being developed at the UGCT, and the analysis of the 3D data focuses primarily on the characterization of pore structures, but will be extended to other applications.
Journal Article

Temperature fields produced by traveling distributed heat sources

Thomas W. Eagar, +1 more
- 01 Dec 1983 - 
TL;DR: The solution of a traveling distributed heat source on a semi-infinite plate provides information about both the size and the shape of arc weld pools as mentioned in this paper, and the results indicate that both welding process variables (current, arc length and travel speed) and material parameters (thermal diffusivity) have significant effects on weld shape.
Related Papers (5)