scispace - formally typeset
Journal ArticleDOI

On the freshwater forcing and transport of the Atlantic thermohaline circulation

Stefan Rahmstorf
- 01 Nov 1996 - 
- Vol. 12, Iss: 12, pp 799-811
Reads0
Chats0
TLDR
In this article, it is argued that the freshwater loss to the atmosphere arises mainly in the subtropical South Atlantic and is balanced by northward freshwater transport in the wind-driven sub-tropical gyre, while the thermohaline circulation transports freshwater southward.
Abstract
The 'conveyor belt' circulation of the Atlantic Ocean transports large amounts of heat northward, acting as a heating system for the northern North Atlantic region. It is widely thought that this circulation is driven by atmospheric freshwater export from the Atlantic catchment region, and that it transports freshwater northward to balance the loss to the atmosphere. Using results from a simple conceptual model and a global circulation model, it is argued here that the freshwater loss to the atmosphere arises mainly in the subtropical South Atlantic and is balanced by northward freshwater transport in the wind-driven subtropical gyre, while the thermohaline circulation transports freshwater southward. It is further argued that the direction of freshwater transport is closely linked to the dynamical regime and stability of the 'conveyor belt': if its freshwater transport is indeed southward, then its flow is purely thermally driven and inhibited by the freshwater forcing. In this case the circulation is not far from Stommel's saddle-node bifurcation, and a circulation state without NADW formation would also be stable.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Fast Northward Energy Transfer in the Atlantic due to Agulhas Rings

TL;DR: In this article, the adiabatic transit time of wave energy radiated by an Agulhas ring released in the South Atlantic Ocean to the North Atlantic Ocean is investigated in a two-layer ocean model.
Journal ArticleDOI

Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM

TL;DR: In this paper, the authors investigated the mechanism behind the transition between the on and off states in the two experiments and found that the difference in hysteresis is due to the different off states, and that the development of the Pacific overturning cell results in greater atmospheric moisture transport into the North Atlantic and also is likely responsible for a stronger Atlantic reverse cell.
Journal ArticleDOI

Surface wind-stress threshold for glacial Atlantic overturning

TL;DR: In this article, the sensitivity of the last glacial maximum (LGM) Atlantic meridional overturning circulation (AMOC) to the strength of surface wind-stress is investigated.

On the Role of the Agulhas System in Ocean Circulation and Climate

Arne Biastoch
TL;DR: The role of the Agulhas system in a warming climate has been investigated in this paper, where it is shown that increasing leakage under anthropogenic warming could strengthen the Atlantic overturning circulation at a time when warming and accelerated meltwater input in the North Atlantic is predicted to weaken it.
Journal ArticleDOI

River runoff influences on the Central Mediterranean overturning circulation

TL;DR: In this article, the role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas.
References
More filters

Climatological atlas of the world ocean

TL;DR: A project to objectively analyze historical ocean temperature, salinity, oxygen, and percent oxygen saturation data for the world ocean has recently been completed at the National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.
Book

Climatological Atlas of the World Ocean

TL;DR: A project to objectively analyze historical ocean temperature, salinity, oxygen, and percent oxygen saturation data for the world ocean has recently been completed at the National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.
Journal ArticleDOI

Normal Monthly Wind Stress Over the World Ocean with Error Estimates

TL;DR: In this paper, wind and air-minus-sea temperatures are calculated in a form suitable for determining stress by any bulk aerodynamics model in which the drag coefficient can be represented by six or less coefficients of a second-degree polynomial in wind speed and stability.
Journal ArticleDOI

Interocean Exchange of Thermocline Water

TL;DR: In this paper, it is proposed that this return flow is accomplished primarily within the ocean's warm water thermocline layer, where the main thermoclines of the ocean are linked as they participate in a thermohaline-driven global scale circulation cell associated with NADW formation.
Journal ArticleDOI

The Great Ocean Conveyor

Wallace Broeker
- 01 Jan 1991 - 
TL;DR: The ocean's conveyor appears to be driven by the salt left behind as the result of water-vapor transport through the atmosphere from the Atlantic to the Pacific basin this paper.
Related Papers (5)