scispace - formally typeset
Open AccessJournal ArticleDOI

Oscillating foils of high propulsive efficiency

TLDR
In this article, the phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.
Abstract
Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Karman street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.

read more

Citations
More filters
Journal ArticleDOI

Review of fish swimming modes for aquatic locomotion

TL;DR: In this article, an overview of the swimming mechanisms employed by fish is presented, with a relevant and useful introduction to the existing literature for engineers with an interest in the emerging area of aquatic biomechanisms.
Journal ArticleDOI

Recent progress in flapping wing aerodynamics and aeroelasticity

TL;DR: In this article, a review of the recent progress in flapping wing aerodynamics and aeroelasticity is presented, where it is realized that a variation of the Reynolds number (wing sizing, flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which impacts the aerodynamic force generation.
Journal ArticleDOI

Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency

TL;DR: Tuning cruise kinematics to optimize St seems to be a general principle of oscillatory lift-based propulsion of swimming and flying animals.
Journal ArticleDOI

Hydrodynamics of Fishlike Swimming

TL;DR: In this article, the principal mechanism for producing propulsive and transient forces in oscillating flexible bodies and fins in water, the formation and control of large-scale vortices, was identified.
Journal ArticleDOI

Passive and Active Flow Control by Swimming Fishes and Mammals

TL;DR: The vortex wake shed by the tail differs between eel-like fishes and fishes with a discrete narrowing of the body in front of the tail, and three-dimensional effects may play a major role in determining wake structure in most fishes.
References
More filters
Book

An Introduction to Fluid Dynamics

TL;DR: The dynamique des : fluides Reference Record created on 2005-11-18 is updated on 2016-08-08 and shows improvements in the quality of the data over the past decade.
Journal ArticleDOI

An Introduction to Fluid Dynamics. By G. K. Batchelor. Pp. 615. 75s. (Cambridge.)

TL;DR: In this paper, the Navier-Stokes equation is derived for an inviscid fluid, and a finite difference method is proposed to solve the Euler's equations for a fluid flow in 3D space.
Journal ArticleDOI

Digital Particle Image Velocimetry

TL;DR: In this article, the directional ambiguity associated with PIV and LSV is resolved by implementing local spatial cross-correlations between two sequential single-exposed particle images, and the recovered velocity data are used to compute the spatial and temporal vorticity distribution and the circulation of the vortex ring.
Journal ArticleDOI

Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion

TL;DR: In this paper, it was shown that a stable coexistence of the jet profile and the large-scale patterns is ensured only at the frequency of maximum amplification, hence at this frequency optimal efficiency is obtained, i.e., maximum thrust per unit input energy.
Journal ArticleDOI

Vortical patterns in the wake of an oscillating airfoil

TL;DR: In this article, the vortical flow patterns in the wake of a NACA 0012 airfoil pitching at small amplitudes were studied in a low speed water channel, and it was shown that a great deal of control can be exercised on the structure of the wake by the control of the frequency, amplitude and also the shape of the oscillation waveform.
Related Papers (5)