scispace - formally typeset
Open AccessJournal ArticleDOI

Petawatt class lasers worldwide

TLDR
The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser as mentioned in this paper, which has been constructed for specific research activities, including particle acceleration, inertial confinement fusion and radiation therapy.
Abstract
The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities, including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation (x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide. The definition of ‘petawatt class’ in this context is a laser that delivers .

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Contemporary particle-in-cell approach to laser-plasma modelling

TL;DR: Particle-in-cell (PIC) methods have a long history in the study of laser-plasma interactions as discussed by the authors, and they have been widely used in the literature.
Journal ArticleDOI

Diffraction gratings: from principles to applications in high-intensity lasers

TL;DR: In this article, the authors review the physics of diffraction gratings and detail the interest in them for pulse compression of high-power laser systems, showing that the unique spectral properties of these gratings revolutionized the field of high energy laser systems.
Journal ArticleDOI

Measuring vacuum polarization with high-power lasers

TL;DR: In this paper, the authors provide an overview of experimental signatures that have been suggested to confirm the prediction of quantum electrodynamics of real photon-photon scattering. But they do not provide a detailed analysis of these signatures.
References
More filters
Journal ArticleDOI

Compression of amplified chirped optical pulses

TL;DR: In this paper, the amplification and subsequent recompression of optical chirped pulses were demonstrated using a system which produces 1.06 μm laser pulses with pulse widths of 2 ps and energies at the millijoule level.
Journal ArticleDOI

Stimulated Optical Radiation in Ruby

TL;DR: Schawlow and Townes as discussed by the authors proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium.
Journal ArticleDOI

Laser Electron Accelerator

TL;DR: In this paper, an intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force, and electrons trapped in the wake can be accelerated to high energy.
Journal Article

Stimulated optical radiation in ruby

T. H. Maiman
TL;DR: Schawlow and Townes as discussed by the authors proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium.
Journal ArticleDOI

Ignition and high gain with ultrapowerful lasers

TL;DR: In this article, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration, and a hole is bored through the capsule corona composed of ablated material, as the critical density is pushed close to the high density core of the capsule by the ponderomotive force associated with high intensity laser light.
Related Papers (5)