scispace - formally typeset
Open AccessJournal ArticleDOI

Premonsoon aerosol characterization and radiative effects over the Indo‐Gangetic Plains: Implications for regional climate warming

Reads0
Chats0
TLDR
In this paper, a detailed characterization of aerosols over the Indo-Gangetic Plains (IGP) and their radiative effects during the pre-monsoon season (April-May-June) was presented, using ground radiometric and spaceborne observations.
Abstract
The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C/decade) and underscores the potential role of enhanced aerosol solar absorption in the maximum warming localized over the western Himalayas (0.26 C/decade f 0.09 C/decade) that significantly exceed the entire HKHT and global warming rates. We believe the accelerated warming rates reported here are critical to both the South Asian summer monsoon and hydro-glaciological resource variability in the Himalayan-Hindu Kush snowpack and therefore to the densely populated downstream regions.

read more

Citations
More filters
Journal ArticleDOI

Extremely large anthropogenic-aerosol contribution to total aerosol load over the Bay of Bengal during winter season

TL;DR: In this article, ship-borne observations of spectral aerosol optical depth (AOD) have been carried out over the entire Bay of Bengal (BoB) as part of the W-ICARB cruise campaign during the period 27 December 2008-30 January 2009.
Journal ArticleDOI

Black carbon aerosol variations over Patiala city, Punjab, India—A study during agriculture crop residue burning period using ground measurements and satellite data

TL;DR: In this article, the variations in black carbon (BC) aerosol mass concentration over Patiala city, Punjab, India, during October/November-2008 associated with agriculture crop residue burning activities were analyzed.
Journal ArticleDOI

Aerosol black carbon quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and source apportionment

TL;DR: In this paper, two years of aerosol spectral light absorption measurements, using filter based technique, from the central Indo-Gangetic plain (IGP), Gorakhpur (26.75°N, 83.38°E, 85 m aml), are analyzed to study their seasonal behavior and quantify their magnitude in terms of absorbing aerosols loading and source speciation.
Journal ArticleDOI

Changing temperature and precipitation extremes in the Hindu Kush-Himalayan region: an analysis of CMIP3 and CMIP5 simulations and projections

TL;DR: In this paper, the authors examined and evaluated multi-model, multi-scenario climate change projections and seven extreme temperature and precipitation indices over the eastern Himalaya (EH) and western Himalaya-Karakoram (WH) regions for the 21st century.
Journal ArticleDOI

Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach

TL;DR: In this article, a Markov Chain Monte Carlo data assimilation approach was used to examine and evaluate the performance of a conceptual, degree-day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya.
References
More filters

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Related Papers (5)