scispace - formally typeset
Open AccessJournal ArticleDOI

Premonsoon aerosol characterization and radiative effects over the Indo‐Gangetic Plains: Implications for regional climate warming

Reads0
Chats0
TLDR
In this paper, a detailed characterization of aerosols over the Indo-Gangetic Plains (IGP) and their radiative effects during the pre-monsoon season (April-May-June) was presented, using ground radiometric and spaceborne observations.
Abstract
The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C/decade) and underscores the potential role of enhanced aerosol solar absorption in the maximum warming localized over the western Himalayas (0.26 C/decade f 0.09 C/decade) that significantly exceed the entire HKHT and global warming rates. We believe the accelerated warming rates reported here are critical to both the South Asian summer monsoon and hydro-glaciological resource variability in the Himalayan-Hindu Kush snowpack and therefore to the densely populated downstream regions.

read more

Citations
More filters
Journal ArticleDOI

MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and "merged" data sets, and usage recommendations

TL;DR: In this paper, the authors compare the performance of the Enhanced Deep Blue (DB) and Dark Target (DT) algorithms over land, and a DT over-water algorithm over desert/urban areas.

Warming of the Eurasian Landmass is Making the Arabian Sea More Productive

TL;DR: The recent trend of declining winter and spring snow cover over Eurasia is causing a land-ocean thermal gradient that is particularly favorable to stronger southwest (summer) monsoon winds, raising the possibility that the current warming trend of the Eurasian landmass is making the Arabian Sea more productive.
Journal ArticleDOI

Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013)

TL;DR: In this article, the authors explore the southern slopes of Mt Everest, analyzing the time series of temperature and precipitation reconstructed from seven stations located between 2660 and 5600 m asl during 1994-2013, complemented with the data from all existing ground weather stations located on both sides of the mountain range (Koshi Basin) over the same period.
References
More filters
Journal ArticleDOI

Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols

TL;DR: Simulation of the evolution of the chemical composition of aerosols finds that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles.
Journal ArticleDOI

A technology-based global inventory of black and organic carbon emissions from combustion

TL;DR: This article presented a bottom-up estimate of uncertainties in source strength by combining uncertainties in particulate matter emission factors, emission characterization, and fuel use, with uncertainty ranges of 4.3-22 Tg/yr for BC and 17-77 Tg /yr for OC.
Journal ArticleDOI

A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements

TL;DR: The developed algorithm is adapted for the retrieval of aerosol properties from measurements made by ground-based Sun-sky scanning radiometers used in the Aerosol Robotic Network (AERONET) and allows a choice of normal or lognormal noise assumptions.
Journal ArticleDOI

Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review

TL;DR: A review of the many developments in estimates of the direct and indirect global annual mean radiative forcing due to present-day concentra- tions of anthropogenic tropospheric aerosols since the Inter- governmental Panel on Climate Change (1996) is presented in this paper.
Journal ArticleDOI

Climate Effects of Black Carbon Aerosols in China and India

TL;DR: A global climate model used to investigate possible aerosol contributions to trends in China and India found precipitation and temperature changes in the model that were comparable to those observed if the aerosols included a large proportion of absorbing black carbon (“soot”), similar to observed amounts.
Related Papers (5)