scispace - formally typeset

Journal ArticleDOI

Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States.

03 May 2001-Nature (Nature Publishing Group)-Vol. 411, Iss: 6833, pp 69-73

TL;DR: It is suggested that depleted mantle is intrinsically less dense than fertile mantle (due to iron having been lost when melt was extracted from the rock), which allows the depleted mantle to form a thicker thermal boundary layer between the deep convecting mantle and the crust, thus reducing tectonic activity at the surface.

AbstractStable continental regions, free from tectonic activity, are generally found only within ancient cratons—the centres of continents which formed in the Archaean era, 4.0–2.5 Gyr ago. But in the Cordilleran mountain belt of western North America some younger (middle Proterozoic) regions have remained stable, whereas some older (late Archaean) regions have been tectonically disturbed, suggesting that age alone does not determine lithospheric strength and crustal stability. Here we report rhenium–osmium isotope and mineral compositions of peridotite xenoliths from two regions of the Cordilleran mountain belt. We found that the younger, undeformed Colorado plateau is underlain by lithospheric mantle that is 'depleted' (deficient in minerals extracted by partial melting of the rock), whereas the older (Archaean), yet deformed, southern Basin and Range province is underlain by 'fertile' lithospheric mantle (not depleted by melt extraction). We suggest that the apparent relationship between composition and lithospheric strength, inferred from different degrees of crustal deformation, occurs because depleted mantle is intrinsically less dense than fertile mantle (due to iron having been lost when melt was extracted from the rock). This allows the depleted mantle to form a thicker thermal boundary layer between the deep convecting mantle and the crust, thus reducing tectonic activity at the surface. The inference that not all Archaean crust developed a strong and thick thermal boundary layer leads to the possibility that such ancient crust may have been overlooked because of its intensive reworking or lost from the geological record owing to preferential recycling.

Topics: Mantle (geology) (58%), Hotspot (geology) (57%), Peridotite (56%), Crust (55%), Igneous rock (55%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
Abstract: Re–Os data for peridotite xenoliths carried in Paleozoic kimberlites and Tertiary alkali basalts confirm previous suggestions that the refractory and chemically buoyant lithospheric keel present beneath the eastern block of the North China craton (and sampled by Paleozoic kimberlites) is indeed Archean in age and was replaced by more fertile lithospheric mantle sometime after the Paleozoic. Moreover, lithospheric mantle beneath the central portion of the craton (west of the major gravity lineament) formed during the last major Precambrian orogeny, around 1900 Ma ago. This age is significantly younger than the overlying crust (2700 Ma), suggesting that the original Archean lithosphere was replaced in the Proterozoic. The timing of lithospheric replacement in the eastern block of the North China Craton is constrained only to the Phanerozoic by the Re–Os results. Circumstantial geologic evidence suggests this new lithosphere is Jurassic or Cretaceous in age and formed after collision of the Yangtze and North China cratons in the Triassic, an event that was also responsible for the subduction and uplift of ultrahigh-pressure metamorphic rocks. Collectively, these data suggest that lithosphere replacement occurred in response to two continent collisional events widely separated in time (∼1900 and ∼220 Ma). Coupled with observations from other Archean cratons we suggest that wholesale replacement of lithospheric mantle (±lower crust) may require large-scale continental collision.

761 citations


Additional excerpts

  • ...eastern Greenland (see [8] for data sources)....

    [...]

  • ...Peridotite xenoliths from the Mojavia terrane in the southern Basin and Range are much more Ferich than typical cratonic lithosphere, but formed at the same time as the overlying crust, in the late Archean/earliest Proterozoic [8]....

    [...]


Book ChapterDOI
Abstract: Fragments of the Earth’s mantle are frequently transported to the surface via volcanic rocks that are dominantly alkaline in nature. These fragments range up to sizes in excess of 1 m across. The term “mantle xenoliths” or “mantle nodules” is applied to all rock and mineral inclusions of presumed mantle derivation that are found within host rocks of volcanic origin. The purpose of this contribution is to review the geochemistry of mantle xenoliths.

495 citations


Journal ArticleDOI
Abstract: Basaltic magmatism is a common feature of dynamically active terrestrial planets. The compositions of basalts reflect the temperatures and pressures of magma generation, providing windows into a planet's thermal state. Here, we present new thermobarometers based on magma Si and Mg contents to estimate the pressures and temperatures of basaltic magma generation on Earth and other terrestrial planets. Melting on Earth is intimately tied to plate tectonics and occurs mostly at plate boundaries: mid-ocean ridges and subduction zones. Beneath ridges, melting is driven by adiabatic decompression of passively upwelling mantle at 1300–1400 °C. Similar temperatures of melting are found for some arcs, suggesting that decompression melting is also important in arcs and that enhanced melting by hydrous fluxing is superimposed on this background. However, in arcs where melting temperatures are low (1200 °C), hydrous fluxing is required. Temperatures hotter than ridges (> 1400 °C) are primarily found away from plate boundaries: beneath thick continental lithosphere and oceanic “hotspots” like Hawaii. Oceanic “hotspots” are thought to derive from deep thermal upwellings (“plumes”), but some hot anomalies beneath continents are not associated with deep-seated plumes and hence must have different origins, such as thermal insulation or radioactive heating of metasomatized zones. Melting on Venus, as constrained from spectral data of its surface, occurs at higher temperatures (1500 °C) and pressures than on Earth, perhaps because Venus is characterized by a thick and stagnant upper thermal boundary layer that retards convective heat loss. In this regard, Venus' upper thermal boundary layer may be analogous to thick continents on Earth. Mars appears to have cooled off to

491 citations


Journal ArticleDOI
01 Sep 2004-Lithos
Abstract: We report mineralogical and chemical compositions of spinel peridotite xenoliths from two Tertiary alkali basalt localities on the Archean North China craton (Hannuoba, located in the central orogenic block, and Qixia, in the eastern block). The two peridotite suites have major element compositions that are indistinguishable from each other and reflect variable degrees (0– 25%) of melt extraction from a primitive mantle source. Their compositions are markedly different from typical cratonic lithosphere, consistent with previous suggestions for removal of the Archean mantle lithosphere beneath this craton. Our previously published Os isotopic results for these samples [Earth Planet. Sci. Lett. 198 (2002) 307] show that lithosphere replacement occurred in the Paleoproterozoic beneath Hannuoba, but in the Phanerozoic beneath Qixia. Thus, we see no evidence for a compositional distinction between Proterozoic and Phanerozoic continental lithospheric mantle. The Hannuoba xenoliths equilibrated over a more extensive temperature (hence depth) interval than the Qixia xenoliths. Neither suite shows a correlation between equilibration temperature and major element composition, indicating that the lithosphere is not chemically stratified in either area. Trace element and Sr and Nd isotopic compositions of the Hannuoba xenoliths reflect recent metasomatic overprinting that is not related to the Tertiary magmatism in this area. D 2004 Elsevier B.V. All rights reserved.

447 citations


Cites background from "Preservation of ancient and fertile..."

  • ...Lee et al. (2001) proposed that the thinner lithosphere beneath Mojavia failed to shield this small fragment of Archean lithosphere from tectonic reworking....

    [...]

  • ...Mojavia is underlain by late Archean lithospheric mantle that is considerably more fertile and dense than typical cratonic mantle (Lee et al., 2001)....

    [...]


Journal ArticleDOI
Abstract: [1] Unlike in the ocean basins where the shallow mantle eventually contributes to the destruction of the overlying crust, the shallow mantle beneath continents serves as a stiff, buoyant “root” whose presence may be essential to the long-term survival of continental crust at Earth's surface. These distinct roles for subcrustal mantle come about because the subcontinental mantle consists of a thick section of material left behind after extensive partial melt extraction, possibly from the wedge of mantle overlying a subducting oceanic plate. Melt removal causes the continental mantle to be cold and strong but also buoyant compared to oceanic mantle. These characteristics allow thick sections of cold mantle to persist beneath continental crust in some cases for over 3 billion years. If the continental mantle becomes gravitationally unstable, however, its detachment from the overlying crust can cause major episodes of intracontinental deformation and volcanism.

400 citations


References
More filters

Journal ArticleDOI
Abstract: Compositional models of the Earth are critically dependent on three main sources of information: the seismic profile of the Earth and its interpretation, comparisons between primitive meteorites and the solar nebula composition, and chemical and petrological models of peridotite-basalt melting relationships. Whereas a family of compositional models for the Earth are permissible based on these methods, the model that is most consistent with the seismological and geodynamic structure of the Earth comprises an upper and lower mantle of similar composition, an FeNi core having between 5% and 15% of a low-atomic-weight element, and a mantle which, when compared to CI carbonaceous chondrites, is depleted in Mg and Si relative to the refractory lithophile elements. The absolute and relative abundances of the refractory elements in carbonaceous, ordinary, and enstatite chondritic meteorites are compared. The bulk composition of an average CI carbonaceous chondrite is defined from previous compilations and from the refractory element compositions of different groups of chondrites. The absolute uncertainties in their refractory element compositions are evaluated by comparing ratios of these elements. These data are then used to evaluate existing models of the composition of the Silicate Earth. The systematic behavior of major and trace elements during differentiation of the mantle is used to constrain the Silicate Earth composition. Seemingly fertile peridotites have experienced a previous melting event that must be accounted for when developing these models. The approach taken here avoids unnecessary assumptions inherent in several existing models, and results in an internally consistent Silicate Earth composition having chondritic proportions of the refractory lithophile elements at ∼ 2.75 times that in CI carbonaceous chondrites. Element ratios in peridotites, komatiites, basalts and various crustal rocks are used to assess the abundances of both non-lithophile and non-refractory elements in the Silicate Earth. These data provide insights into the accretion processes of the Earth, the chemical evolution of the Earth's mantle, the effect of core formation, and indicate negligible exchange between the core and mantle throughout the geologic record (the last 3.5 Ga). The composition of the Earth's core is poorly constrained beyond its major constituents (i.e. an FeNi alloy). Density contrasts between the inner and outer core boundary are used to suggest the presence (∼ 10 ± 5%) of a light element or a combination of elements (e.g., O, S, Si) in the outer core. The core is the dominant repository of siderophile elements in the Earth. The limits of our understanding of the core's composition (including the light-element component) depend on models of core formation and the class of chondritic meteorites we have chosen when constructing models of the bulk Earth's composition. The Earth has a bulk Fe Al of ∼ 20 ± 2, established by assuming that the Earth's budget of Al is stored entirely within the Silicate Earth and Fe is partitioned between the Silicate Earth (∼ 14%) and the core (∼ 86%). Chondritic meteorites display a range of Fe Al ratios, with many having a value close to 20. A comparison of the bulk composition of the Earth and chondritic meteorites reveals both similarities and differences, with the Earth being more strongly depleted in the more volatile elements. There is no group of meteorites that has a bulk composition matching that of the Earth's.

9,413 citations


"Preservation of ancient and fertile..." refers background in this paper

  • ...For internal consistency, the density for convecting upper mantl...

    [...]



Journal ArticleDOI
01 Aug 1978-Nature
Abstract: Beneath the old continental nuclei are thick root zones which translate coherently during plate motions. These zones are apparently stabilised against convective disruption by the depletion of the continental upper mantle in a basalt-like component. Construction of this delicately balanced tectosphere is accomplished by the dynamic and magmatic processes of the Wilson cycle.

725 citations


"Preservation of ancient and fertile..." refers background in this paper

  • ...This allows the depleted mantle to form a thicker thermal boundary laye...

    [...]


Journal ArticleDOI
Abstract: Isotope analyses of Os, Sr, Nd, and Pb elements were caried out on twelve peridotite xenoliths from the Jagersfontein, Letseng-la-terae, Thaba Patsoa, Mothae, and Premier kimberlites of southern Africa, to investigate the timing and the nature of melt extraction from the continental lithosphere and its relation to the continent formation and stabilization. The distinct Os and Pb isotopic characteristics found in these samples suggested that both the low- and the high-temperature peridotites reside in an ancient stable lithospheric 'keel' to the craton that has been isolated from chemical exchange with the sublithospheric mantle for time periods in excess of 2 Ga.

663 citations


"Preservation of ancient and fertile..." refers background in this paper

  • ...Assuming that partial melting leads to stabilization of the lithospheric mantle, the Re–Os isotope systematics of peridotite xenoliths (samples of the lithospheric mantle) can be used to date this time of stabilization; this is because partial melting fractionates Re/Os (Re is moderately depleted and Os is sequestered in the residu...

    [...]


Journal ArticleDOI
Abstract: Initial Nd isotopic ratios of crystalline rocks from an area of ∼ 1.5 × 10 6 km 2 of the western United States have been determined in order to map Precambrian age province boundaries and thus document the growth and modification of the North American continent in the Proterozoic. The use of three representative rock suites of different ages— Mesozoic and Tertiary peraluminous granitic rocks, middle Proterozoic (ca. 1.4 Ga) “an-orogenic” granitic rocks, and lower Proterozoic (ca. 1.7 Ga) igneous and metamorphic rocks—allows the ages of the provinces to be distinguished on the basis of different Nd isotopic evolution paths rather than solely on the basis of model ages. Three age provinces have been delineated, each generally northeast-southwest trending, having decreasing crystallization ages and increasing initial e Nd values with increasing distance southeastward from the Archean craton. Province 1 is composed of crustal rocks of central Utah and northeastern Nevada, which are characterized by average values of e Nd (1.7 Ga) ≈ 0 and T DM ≈ 2.0–2.3 Ga. Province 2 covers Colorado, southern Utah, and northwestern Arizona and has e Nd (1.7 Ga) ≈ +3 and T DM ≈ 1.8–2.0 Ga. Province 3, which comprises the basement rocks of New Mexico and southern Arizona, has e Nd (1.7 Ga) ≈ +5 and T DM ≈ 1.7–1.8 Ga. An additional region of province 1-type isotopic characteristics, herein named “Mojavia,” is found in eastern California and western Nevada. Crust formation in each province involved a large component of mantle-derived material plus a moderate amount (∼20%) of pre-existing crust. As the new crust was built outward from the Archean nucleus, however, contributions of Archean material to the newly forming crust were more effectively screened, so that the most distal province (3) is derived almost entirely from Proterozoic mantle. The province boundaries are subparallel to the crystallization age trends determined by other workers. An exception to this is the Mojavia region of province 1, which crosscuts and truncates the other provinces in the region of the lower Colorado River. This region appears to be displaced relative to other areas of the North American basement that have similar isotopic characteristics. This suggests the presence of a previously unrecognized large-scale, left-lateral, north-south–trending basement offset of Proterozoic age in the vicinity of the California-Arizona border.

493 citations


"Preservation of ancient and fertile..." refers background in this paper

  • ...But in the Cordilleran mountain belt of western North America some younger (middle Proterozoic) regions have remained stabl...

    [...]