scispace - formally typeset
Journal ArticleDOI

Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase

Heather P. Harding, +2 more
- 21 Jan 1999 - 
- Vol. 397, Iss: 6716, pp 271-274
Reads0
Chats0
TLDR
The cloning of perk is described, a gene encoding a type I transmembrane ER-resident protein that contains a protein-kinase domain most similar to that of the known eIF2α kinases, PKR and HRI that implicate PERK in a signalling pathway that attenuates protein translation in response to ER stress.
Abstract
Protein synthesis and the folding of the newly synthesized proteins into the correct three-dimensional structure are coupled in cellular compartments of the exocytosis pathway by a process that modulates the phosphorylation level of eukaryotic initiation factor-2alpha (eIF2alpha) in response to a stress signal from the endoplasmic reticulum (ER). Activation of this process leads to reduced rates of initiation of protein translation during ER stress. Here we describe the cloning of perk, a gene encoding a type I transmembrane ER-resident protein. PERK has a lumenal domain that is similar to the ER-stress-sensing lumenal domain of the ER-resident kinase Ire1, and a cytoplasmic portion that contains a protein-kinase domain most similar to that of the known eIF2alpha kinases, PKR and HRI. ER stress increases PERK's protein-kinase activity and PERK phosphorylates eIF2alpha on serine residue 51, inhibiting translation of messenger RNA into protein. These properties implicate PERK in a signalling pathway that attenuates protein translation in response to ER stress.

read more

Citations
More filters
Journal ArticleDOI

ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players

TL;DR: Calcium (Ca2+) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions and regulates cell death both at the early and late stages of apoptosis.
Journal ArticleDOI

Leukoencephalopathy With Vanishing White Matter: A Review

TL;DR: Vanishing white matter mutations reduce the activity of eIF2B and impair its function to couple protein synthesis to the cellular demands in basal conditions and during stress, and VWM cells are constitutively predisposed and hyperreactive to stress.
Book ChapterDOI

Protein Folding in the Endoplasmic Reticulum and the Unfolded Protein Response

TL;DR: This chapter summarizes how cells respond to the accumulation of unfolded proteins in the cell and the relevance of these signaling pathways to human physiology and disease.
Journal ArticleDOI

Endoplasmic reticulum stress-activated transcription factor ATF6α requires the disulfide isomerase PDIA5 to modulate chemoresistance.

TL;DR: The mechanisms underlying the role of ATF6α activation in carcinogenesis and chemoresistance are defined and PDIA5 is identified as a key regulator ATF6 α-mediated cellular functions in cancer.
Journal ArticleDOI

The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells.

TL;DR: The transcript levels of genes encoding secreted proteins, like cellulases and xylanases, were drastically decreased, suggesting a novel type of feedback mechanism activated in response to impairment in protein folding or transport (repression under secretion stress (RESS).
References
More filters
Journal ArticleDOI

Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus.

TL;DR: Molecular genetic and biochemical studies described here suggest that, as in the case of growth factor receptors of higher eukaryotic cells, Ire1p oligomerizes in response to the accumulation of unfolded proteins in the ER and is phosphorylated in trans by otherIre1p molecules as a result of oligomerization.
Journal ArticleDOI

Protein folding in the cell.

TL;DR: Folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.
Journal ArticleDOI

The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins

TL;DR: Testing the hypothesis that the presence of malfolded proteins may be the primary signal for induction of GRPs by expressing wild-type and mutant forms of influenza virus haemagglutinin in simian cells shows that malfoldingper se, rather than abnormal glycosylation1, is the proximal inducer of this family of stress proteins.
Journal ArticleDOI

Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase

TL;DR: IRE1 encodes a transmembrane serine/threonine kinase that it is proposed transmits the unfolded protein signal across the ER or inner nuclear membrane, suggesting that the induction of ER resident proteins is coupled to the biogenesis of new ER membrane.
Journal ArticleDOI

A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells

TL;DR: HIre1p is an essential proximal sensor of the unfolded protein response pathway in mammalian cells and is demonstrated to be highly conserved to the yeast counterpart having a Ser/Thr protein kinase domain and a domain homologous to RNase L.
Related Papers (5)