scispace - formally typeset
Journal ArticleDOI

Pursuing prosthetic electronic skin.

Alex Chortos, +2 more
- 01 Sep 2016 - 
- Vol. 15, Iss: 9, pp 937-950
TLDR
This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.
Abstract
Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

read more

Citations
More filters
Journal ArticleDOI

A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing

TL;DR: This work describes an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors, opening a path towards extreme interconnectivity comparable to the human brain.
Journal ArticleDOI

Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing

TL;DR: A skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity is presented.
Journal ArticleDOI

Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics

TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
Journal ArticleDOI

Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing

TL;DR: A soft skin-like triboelectric nanogenerator that enables both biomechanical energy harvesting and tactile sensing by hybridizing elastomer and ionic hydrogel as the electrification layer and electrode, respectively is reported, providing new opportunities for multifunctional power sources and potential applications in soft/wearable electronics.
Journal ArticleDOI

A Bioinspired Mineral Hydrogel as a Self-Healable, Mechanically Adaptable Ionic Skin for Highly Sensitive Pressure Sensing.

TL;DR: A bioinspired mineral hydrogel is developed to fabricate a novel type of mechanically adaptable ionic skin sensor that is compliant, self-healable, and can sense subtle pressure changes, such as a gentle finger touch, human motion, or even small water droplets.
References
More filters
Journal ArticleDOI

Materials and mechanics for stretchable electronics

TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Journal ArticleDOI

Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Journal ArticleDOI

A stretchable carbon nanotube strain sensor for human-motion detection

TL;DR: A class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes capable of measuring strains up to 280% with high durability, fast response and low creep is reported.
Journal ArticleDOI

Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers

TL;DR: Flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane are demonstrated.
Journal ArticleDOI

An ultra-lightweight design for imperceptible plastic electronics

TL;DR: In this paper, the authors present a platform that makes electronics both virtually unbreakable and imperceptible on polyimide polysilicon elastomers, which can be operated at high temperatures and in aqueous environments.
Related Papers (5)