scispace - formally typeset
Journal ArticleDOI

Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries

Reads0
Chats0
About
This article is published in Advanced Energy Materials.The article was published on 2018-04-01. It has received 771 citations till now.

read more

Citations
More filters
Journal ArticleDOI

Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces

TL;DR: This review presents an overview on the scientific challenges, fundamental mechanisms, and design strategies for solid-state batteries, specifically focusing on the stability issues ofSolid-state electrolytes and the associated interfaces with both cathode and anode electrodes.
Journal ArticleDOI

Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes

TL;DR: In this article, a new class of Zn anodes modified by a 3D nanoporous ZnO architecture coating on a Zn plate (designated as Zn@ZnO-3D) was presented.
Journal ArticleDOI

Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries.

TL;DR: A nanoporous polyimide film filled with a solid polymer electrolyte has high ionic conductivity and high mechanical strength, and an all-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance and withstand abuse tests such as bending, cutting and nail penetration.
Journal ArticleDOI

Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries.

TL;DR: Garnet-type electrolyte has been considered one of the most promising and important solid-state electrolytes for batteries with potential benefits in energy density, electrochemical stability, high temperature stability, and safety, and this Review will survey recent development of garnet- type LLZO electrolytes.
References
More filters
Journal ArticleDOI

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.

TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Journal ArticleDOI

A lithium superionic conductor

TL;DR: A lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure that exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature, which represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes.
Journal ArticleDOI

Lithium battery chemistries enabled by solid-state electrolytes

TL;DR: In this article, the authors provide a background overview and discuss the state of the art, ion-transport mechanisms and fundamental properties of solid-state electrolyte materials of interest for energy storage applications.
Journal ArticleDOI

Nanocomposite polymer electrolytes for lithium batteries

TL;DR: In this article, the authors showed that nanometre-sized ceramic powders can be used as solid plasticizers for polyethylene oxide (PEO) electrolytes to prevent crystallization on annealing from amorphous state above 60°C.
Related Papers (5)