scispace - formally typeset
Open Access

REVIEW ARTICLE Cloud Feedbacks in the Climate System: A Critical Review

TLDR
A review of cloud-climate feedbacks can be found in this paper, where it is argued that cloud feedbacks are likely to control the bulk precipitation efficiency and associated responses of the planet's hydrological cycle to climate radiative forcings.
Abstract
This paper offers a critical review of the topic of cloud–climate feedbacks and exposes some of the underlying reasons for the inherent lack of understanding of these feedbacks and why progress might be expected on this important climate problem in the coming decade. Although many processes and related parameters come under the influence of clouds, it is argued that atmospheric processes fundamentally govern the cloud feedbacks via the relationship between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. It is also shown how perturbations to the atmospheric radiation budget that are induced by cloud changes in response to climate forcing dictate the eventual response of the global-mean hydrological cycle of the climate model to climate forcing. This suggests that cloud feedbacks are likely to control the bulk precipitation efficiency and associated responses of the planet’s hydrological cycle to climate radiative forcings. The paper provides a brief overview of the effects of clouds on the radiation budget of the earth– atmosphere system and a review of cloud feedbacks as they have been defined in simple systems, one being a system in radiative–convective equilibrium (RCE) and others relating to simple feedback ideas that regulate tropical SSTs. The systems perspective is reviewed as it has served as the basis for most feedback analyses. What emerges is the importance of being clear about the definition of the system. It is shown how different assumptions about the system produce very different conclusions about the magnitude and sign of feedbacks. Much more diligence is called for in terms of defining the system and justifying assumptions. In principle, there is also neither any theoretical basis to justify the system that defines feedbacks in terms of global–time-mean changes in surface temperature nor is there any compelling empirical evidence to do so. The lack of maturity of feedback analysis methods also suggests that progress in understanding climate feedback will require development of alternative methods of analysis. It has been argued that, in view of the complex nature of the climate system, and the cumbersome problems encountered in diagnosing feedbacks, understanding cloud feedback will be gleaned neither from observations nor proved from simple theoretical argument alone. The blueprint for progress must follow a more arduous path that requires a carefully orchestrated and systematic combination of model and observations. Models provide the tool for diagnosing processes and quantifying feedbacks while observations provide the essential test of the model’s credibility in representing these processes. While GCM climate and NWP models represent the most complete description of all the interactions between the processes that presumably establish the main cloud feedbacks, the weak link in the use of these models lies in the cloud parameterization imbedded in them. Aspects of these parameterizations remain worrisome, containing levels of empiricism and assumptions that are hard to evaluate with current global observations. Clearly observationally based methods for evaluating cloud parameterizations are an important element in the road map to progress. Although progress in understanding the cloud feedback problem has been slow and confused by past analysis, there are legitimate reasons outlined in the paper that give hope for real progress in the future.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted ContentDOI

Simulating the effects of mid- to upper-tropospheric clouds on microwave emissions in EC-Earth using COSP

TL;DR: In this paper, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simulation Package (COSP) is expanded to include scattering and emission effects of clouds and precipitation at passive microwave frequencies.
Journal ArticleDOI

Cloud transitions: comparison of temporal variation in the southeastern Pacific with the spatial variation in the northeastern Pacific at low latitudes

TL;DR: The seasonal variation of clouds in the southeastern equatorial Pacific (SEP) is analyzed and compared with the spatial variation in the northeastern Pacific along the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI) transect.

Running GCM physics and dynamics on different grids: algorithm and tests

TL;DR: In this paper, an alternative grid is proposed for general circulation models, which allows the different components of a general circulation model's governing equations to be computed on distinct grids chosen for that component or process.
Journal ArticleDOI

Macrophysical properties of specific cloud types from radiosonde and surface active remote sensing measurements over the ARM Southern Great Plains site

TL;DR: In this article, the consistencies and differences in the macrophysical properties of clouds between radiosonde and ground-based active remote sensing are quantitatively evaluated according to six cloud types: low, mid-low (ML), high-mid-low, mid, high mid-mid (HM), and high high.
Journal ArticleDOI

Some remarks on the inverse Smoluchowski problem for cluster-cluster aggregation

TL;DR: In this article, a regularized least squares method based on the assumption of self-similarity is implemented and tested on numerical data generated for a range of different collision kernels, and it is shown that plotting an L-curve can provide an apriori understanding of the optimal value of the regularisation parameter and the reliability of the inversion procedure.
References
More filters
Book

Climate Change 1995: The Science of Climate Change

TL;DR: The most comprehensive and up-to-date assessment available for scientific understanding of human influences on the past present and future climate is "Climate Change 1995: The Science of Climate Change" as mentioned in this paper.
Journal ArticleDOI

The Influence of Pollution on the Shortwave Albedo of Clouds

TL;DR: In this article, it was shown that pollution can increase the reflectance (albedo) of clouds; by increasing the absorption coefficient it acts to decrease the reflectances, and that the former effect (brightening of the clouds in reflection, hence climatically a cooling effect) dominates for thin to moderately thick clouds.
Journal ArticleDOI

Advances in understanding clouds from ISCCP

TL;DR: The progress report on the International Satellite Cloud Climatology Project (ISCCP) describes changes made to produce new cloud data products (D data), examines the evidence that these changes are improvements over the previous version (C data), summarizes some results, and discusses plans for the ISCCP through 2005.
Journal ArticleDOI

Radiative forcing and climate response

TL;DR: This paper examined the sensitivity of a climate model to a wide range of radiative forcings, including changes of solar irradiance, atmospheric CO2, O3, CFCs, clouds, aerosols, surface albedo, and a "ghost" forcing introduced at arbitrary heights, latitudes, longitudes, seasons, and times of day.
Journal ArticleDOI

The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation

TL;DR: CloudSat as discussed by the authors is a satellite experiment designed to measure the vertical structure of clouds from space, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL).
Related Papers (5)