scispace - formally typeset
Journal ArticleDOI

Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices

Reads0
Chats0
TLDR
The most successful conducting polymer in terms of practical application is poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as discussed by the authors, which possesses many unique properties such as good film forming ability by versatile fabrication techniques, superior optical transparency in visible light range, high electrical conductivity, intrinsically high work function and good physical and chemical stability in air.
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is the most successful conducting polymer in terms of practical application. It possesses many unique properties, such as good film forming ability by versatile fabrication techniques, superior optical transparency in visible light range, high electrical conductivity, intrinsically high work function and good physical and chemical stability in air. PEDOT:PSS has wide applications in energy conversion and storage devices. This review summarizes its applications in organic solar cells, dye-sensitized solar cells, supercapacitors, fuel cells, thermoelectric devices and stretchable devices. Approaches to enhance the material/device performances are highlighted.

read more

Citations
More filters
Journal ArticleDOI

Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS.

TL;DR: These strategies include blending with plasticizers or polymers, deposition on elastomers, formation of fibers and gels, and the use of intrinsically stretchable scaffolds for the polymerization of PEDOT.
Journal ArticleDOI

Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices

TL;DR: This review reviews existing and emerging binders, binding technology used in energy-storage devices, and state-of-the-art mechanical characterization and computational methods for binder research, and proposes prospective next-generation binders for energy- storage devices from the molecular level to the macro level.
Journal ArticleDOI

PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications

TL;DR: This work stresses the importance of developing CP films and reveals their critical role in the evolution of these next‐generation devices featuring wearable, deformable, printable, ultrathin, and see‐through characteristics.
Journal ArticleDOI

Doped Organic Transistors.

TL;DR: The most successful doping models and an overview of the wide variety of materials used as dopants are presented and the influence of doping on charge transport in the most relevant polycrystalline organic semiconductors is reviewed.

High Rates of Oxygen Reduction over a Vapor

Abstract: The air electrode, which reduces oxygen (O2), is a critical component in energy generation and storage applications such as fuel cells and metal/air batteries. The highest current densities are achieved with platinum (Pt), but in addition to its cost and scarcity, Pt particles in composite electrodes tend to be inactivated by contact with carbon monoxide (CO) or by agglomeration. We describe an air electrode based on a porous material coated with poly(3,4-ethylenedioxythiophene) (PEDOT), which acts as an O2 reduction catalyst. Continuous operation for 1500 hours was demonstrated without material degradation or deterioration in performance. O2 conversion rates were comparable with those of Pt-catalyzed electrodes of the same geometry, and the electrode was not sensitive to CO. Operation was demonstrated as an air electrode and as a dissolved O2 electrode in aqueous solution.
References
More filters
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal ArticleDOI

Complex thermoelectric materials.

TL;DR: A new era of complex thermoelectric materials is approaching because of modern synthesis and characterization techniques, particularly for nanoscale materials, and the strategies used to improve the thermopower and reduce the thermal conductivity are reviewed.
Journal Article

Photoelectrochemical cells : Materials for clean energy

Michael Grätzel
- 01 Jan 2001 - 
TL;DR: In this paper, the authors look into the historical background, and present status and development prospects for photoelectrochemical cells, based on nanocrystalline materials and conducting polymer films.
Journal ArticleDOI

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Journal ArticleDOI

Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction

TL;DR: The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER.
Related Papers (5)