scispace - formally typeset
Proceedings ArticleDOI

Scalable stacking and learning for building deep architectures

Li Deng, +2 more
- pp 2133-2136
Reads0
Chats0
TLDR
The Deep Stacking Network (DSN) is presented, which overcomes the problem of parallelizing learning algorithms for deep architectures and provides a method of stacking simple processing modules in buiding deep architectures, with a convex learning problem in each module.
Abstract
Deep Neural Networks (DNNs) have shown remarkable success in pattern recognition tasks. However, parallelizing DNN training across computers has been difficult. We present the Deep Stacking Network (DSN), which overcomes the problem of parallelizing learning algorithms for deep architectures. The DSN provides a method of stacking simple processing modules in buiding deep architectures, with a convex learning problem in each module. Additional fine tuning further improves the DSN, while introducing minor non-convexity. Full learning in the DSN is batch-mode, making it amenable to parallel training over many machines and thus be scalable over the potentially huge size of the training data. Experimental results on both the MNIST (image) and TIMIT (speech) classification tasks demonstrate that the DSN learning algorithm developed in this work is not only parallelizable in implementation but it also attains higher classification accuracy than the DNN.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups

TL;DR: This article provides an overview of progress and represents the shared views of four research groups that have had recent successes in using DNNs for acoustic modeling in speech recognition.
Proceedings Article

Large Scale Distributed Deep Networks

TL;DR: This paper considers the problem of training a deep network with billions of parameters using tens of thousands of CPU cores and develops two algorithms for large-scale distributed training, Downpour SGD and Sandblaster L-BFGS, which increase the scale and speed of deep network training.
Book

Deep Learning: Methods and Applications

Li Deng, +1 more
TL;DR: This monograph provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks, including natural language and text processing, information retrieval, and multimodal information processing empowered by multi-task deep learning.
Journal Article

Deep Neural Networks for Acoustic Modeling in Speech Recognition

TL;DR: This paper provides an overview of this progress and repres nts the shared views of four research groups who have had recent successes in using deep neural networks for a coustic modeling in speech recognition.
Journal ArticleDOI

Convolutional neural networks for speech recognition

TL;DR: It is shown that further error rate reduction can be obtained by using convolutional neural networks (CNNs), and a limited-weight-sharing scheme is proposed that can better model speech features.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Book

Learning Deep Architectures for AI

TL;DR: The motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer modelssuch as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks are discussed.
Journal ArticleDOI

Original Contribution: Stacked generalization

David H. Wolpert
- 05 Feb 1992 - 
TL;DR: The conclusion is that for almost any real-world generalization problem one should use some version of stacked generalization to minimize the generalization error rate.
Book ChapterDOI

GradientBased Learning Applied to Document Recognition

TL;DR: Various methods applied to handwritten character recognition are reviewed and compared and Convolutional Neural Networks, that are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques.
Related Papers (5)