scispace - formally typeset
Journal ArticleDOI

Selective gas adsorption and separation in metal–organic frameworks

Jian-Rong Li, +2 more
- 21 Apr 2009 - 
- Vol. 38, Iss: 5, pp 1477-1504
Reads0
Chats0
TLDR
This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract
Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

read more

Citations
More filters
Journal ArticleDOI

Describing the Diffusion of Guest Molecules Inside Porous Structures

TL;DR: In this article, a unified, phenomenological, description of diffusion inside meso- and microporous structures using concepts and ideas that originate from James Clerk Maxwell and Josef Stefan is presented.
Journal ArticleDOI

Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites

TL;DR: The combination of the high surface areas, microporosity and tuneable compositions of metal-organic frameworks (MOFs) with the desirable photo-physical behaviour of semiconductor nanoparticles or quantum dots (QDs), allows the preparation of composite materials with enhanced properties for applications in photocatalysis, energy, gas storage and sensing as mentioned in this paper.
Journal ArticleDOI

Molecular Simulation Studies of Separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs

TL;DR: In this article, two typical zeolitic imidazolate frameworks (ZIFs) were evaluated for separating CO2, N2, and CH4 adsorption in the presence of chlorine atoms in cbIM linkers.
Journal ArticleDOI

Highly selective carbon dioxide sorption in an organic molecular porous material.

TL;DR: The organic molecular porous material 1 obtained by recrystallization of cucurbit[6]uril (CB[6]) from HCl shows a high CO(2) sorption capacity at 298 K, 1 bar and shows the highest selectivity of CO( 2) over CO among the known porous materials so far.
Journal ArticleDOI

Void Engineering in Metal-Organic Frameworks via Synergistic Etching and Surface Functionalization

TL;DR: In this paper, a top-down strategy is established to construct hollow MOFs via synergistic etching and surface functionalization by using phenolic acid, and the modified MOFs are simultaneously coated by metal-phenolic films, which endows the added functionality of responding to near infrared irradiation to produce heat for potential photothermal therapy applications.
References
More filters
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Hybrid porous solids: past, present, future

TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Related Papers (5)