scispace - formally typeset
Journal ArticleDOI

Selective gas adsorption and separation in metal–organic frameworks

Jian-Rong Li, +2 more
- 21 Apr 2009 - 
- Vol. 38, Iss: 5, pp 1477-1504
Reads0
Chats0
TLDR
This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract
Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

read more

Citations
More filters
Journal ArticleDOI

Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis

TL;DR: The chromium terephthalate metal-organic framework, MIL-101 (MIL, Material Institut Lavoisier), is comprised of trimeric chromium(III) octahedral clusters interconnected by 1,4-benzenedicarboxylates, resulting in a highly porous 3-dimentional structure as discussed by the authors.
Journal ArticleDOI

Transport properties of hierarchical micro–mesoporous materials

TL;DR: This review summarizes the results obtained so far on experimental and theoretical studies of diffusion in micro-mesoporous materials and discusses four common classes of bi-porous materials, which are differing by the inter-connectivities of their sup-spaces as one of the most important parameter determining the transport rates.

Stress-Based Model for the Breathing of Metal-Organic

TL;DR: A simple yet instructive model for the physical mechanism of gas adsorption-induced stress exerted on the material as a stimulus that triggers breathing transitions in flexible metal-organic frameworks suggests that the structural transitions in MOFs occur when the stress reaches a certain critical threshold.
Journal ArticleDOI

A Chemically Stable Hofmann-Type Metal-Organic Framework with Sandwich-Like Binding Sites for Benchmark Acetylene Capture

TL;DR: Theoretical calculations indicate that the oppositely adjacent nickel(II) centers together with cyanide groups from different layers in ZJU-74a can construct a sandwich-type adsorption site to offer dually strong and cooperative interactions for the C2 H2 molecule, thus leading to its ultrahigh C 2 H2 capture capacity and selectivities.
References
More filters
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Hybrid porous solids: past, present, future

TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Related Papers (5)