scispace - formally typeset
Journal ArticleDOI

Selective gas adsorption and separation in metal–organic frameworks

Jian-Rong Li, +2 more
- 21 Apr 2009 - 
- Vol. 38, Iss: 5, pp 1477-1504
Reads0
Chats0
TLDR
This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract
Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

read more

Citations
More filters
Journal ArticleDOI

One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion

TL;DR: In this paper, two new lanthanide metal-organic frameworks Ln(FBPT)(H2O)(DMF) (FBPT = 2′-fluoro-biphenyl-3,4′,5-tricarboxylate, Ln = Eu and Tb) were prepared under solvothermal conditions.
Journal ArticleDOI

Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal.

TL;DR: The inherent advantages of the nano-structured adsorbent, such as adsorption capacity, easy, handy operation, rapid extraction, and regeneration, may pave a new, efficient and sustainable way towards highly-efficient dye pollutant removal in water and wastewater treatment.
Journal ArticleDOI

Ionic liquid-based materials: a platform to design engineered CO2 separation membranes

TL;DR: A judicious assessment of the CO2 separation efficiency of different membranes is provided, and breakthroughs and key challenges in this field are highlighted.
Journal ArticleDOI

Porous covalent–organic materials: synthesis, clean energy application and design

TL;DR: In this paper, Wang et al. proposed a multiscale simulation approach to design and synthesize novel porous covalent-organic materials (COMs) for gas storage, and four possible strategies are proposed to improve their gas adsorptive properties.
Journal ArticleDOI

Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms.

TL;DR: The UiO-66 modulated by addition of acetic acid or HCl in the precursor solution exhibits an excellent selective adsorption to anionic dyes, and more positive Zeta potential of Ui O-66 is beneficial to the anionic dye adsorptive mechanism.
References
More filters
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Hybrid porous solids: past, present, future

TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Related Papers (5)