scispace - formally typeset
Journal ArticleDOI

Selective gas adsorption and separation in metal–organic frameworks

Jian-Rong Li, +2 more
- 21 Apr 2009 - 
- Vol. 38, Iss: 5, pp 1477-1504
Reads0
Chats0
TLDR
This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract
Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

read more

Citations
More filters
Journal ArticleDOI

Kinetic Water Stability of an Isostructural Family of Zinc-Based Pillared Metal–Organic Frameworks

TL;DR: It is demonstrated that while the parent D MOF structure is unstable, the DMOF variation containing the tetramethyl BDC ligand remains fully stable after adsorbing large amounts of water vapor during cyclic water adsorption cycles.
Journal ArticleDOI

Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr)

TL;DR: A metal organic framework modified with amino group (NH2-UiO-66) was functionalized with glycidyl methacrylate (GMA) via ring opening reaction between the amine species in the framework and epoxy groups in GMA as discussed by the authors.
Journal ArticleDOI

Immobilization of Ag(I) into a metal–organic framework with –SO3H sites for highly selective olefin–paraffin separation at room temperature

TL;DR: Introduction of Ag(i) ions into a sulfonic acid functionalized MOF significantly enhances its interactions with olefin double bonds, leading to its much higher selectivities for the separation of C2H4-C2H6 and C3H6-C3H8 at room temperature over the original (Cr)-MIL-101-SO3H and other adsorbents at roomTemperature.
Journal ArticleDOI

Zirconium-Based Metal-Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents.

TL;DR: An overview of the development of Zr-MOFs for the catalytic hydrolysis of organophosphorus substrates is provided, including design principles and mechanistic insights for both solution-based and textile-coated systems.
Journal ArticleDOI

Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

TL;DR: In this paper, a zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water and investigated the effect of an amine functional group.
References
More filters
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Hybrid porous solids: past, present, future

TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Related Papers (5)