scispace - formally typeset
Journal ArticleDOI

Selective gas adsorption and separation in metal–organic frameworks

Jian-Rong Li, +2 more
- 21 Apr 2009 - 
- Vol. 38, Iss: 5, pp 1477-1504
TLDR
This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorbents in rigid and flexible MOFs, and primary relationships between adsorptive properties and framework features are analyzed.
Abstract
Adsorptive separation is very important in industry. Generally, the process uses porous solid materials such as zeolites, activated carbons, or silica gels as adsorbents. With an ever increasing need for a more efficient, energy-saving, and environmentally benign procedure for gas separation, adsorbents with tailored structures and tunable surface properties must be found. Metal–organic frameworks (MOFs), constructed by metal-containing nodes connected by organic bridges, are such a new type of porous materials. They are promising candidates as adsorbents for gas separations due to their large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability. This critical review starts with a brief introduction to gas separation and purification based on selective adsorption, followed by a review of gas selective adsorption in rigid and flexible MOFs. Based on possible mechanisms, selective adsorptions observed in MOFs are classified, and primary relationships between adsorption properties and framework features are analyzed. As a specific example of tailor-made MOFs, mesh-adjustable molecular sieves are emphasized and the underlying working mechanism elucidated. In addition to the experimental aspect, theoretical investigations from adsorption equilibrium to diffusion dynamics via molecular simulations are also briefly reviewed. Furthermore, gas separations in MOFs, including the molecular sieving effect, kinetic separation, the quantum sieving effect for H2/D2 separation, and MOF-based membranes are also summarized (227 references).

read more

Citations
More filters
Journal ArticleDOI

Hydrocarbon Separations in Metal–Organic Frameworks

TL;DR: A comprehensive review of metal-organic frameworks for hydrocarbon separations can be found in this article, with a focus on the potential relevance for separating various industrial alkane-, alkene-, and aromatic-containing mixtures.
Journal ArticleDOI

Highly porous and stable metal–organic frameworks for uranium extraction

TL;DR: In this article, three metal-organic frameworks (MOFs) of the UiO-68 network topology were prepared using the amino-TPDC or TPDC bridging ligands containing orthogonal phosphorylurea groups, and investigated for sorption of uranium from water and artificial seawater.
Journal ArticleDOI

Controlling guest conformation for efficient purification of butadiene

TL;DR: A hydrophilic metal-organic framework, [Zn2(btm)2], where H2btm is bis(5-methyl-1H-1,2,4-triazol-3-yl)methane, has quasi-discrete pores that can induce conformational changes in the flexible guest molecules, weakening 1,3-butadiene adsorption through a large bending energy penalty.
Journal ArticleDOI

In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation.

TL;DR: A simple one step in situ method based on a counter-diffusion concept to prepare well-intergrown ZIF-8 membranes with significantly enhanced microstructure, resulting in exceptionally high separation performance toward propylene over propane.
Journal ArticleDOI

Exploration of porous metal–organic frameworks for gas separation and purification

TL;DR: The microporous mixed-metal-organic frameworks (M′MOFs) have shown great promise for gas separation and purification because of their unique pore structures and surfaces for their differential recognition of small gas molecules as discussed by the authors.
References
More filters
Journal ArticleDOI

Functional porous coordination polymers.

TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Hybrid porous solids: past, present, future

TL;DR: The state-of-the-art on hybrid porous solids, their advantages, their new routes of synthesis, the structural concepts useful for their 'design', aiming at reaching very large pores are presented.
Related Papers (5)