scispace - formally typeset
Open AccessJournal ArticleDOI

Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach

TLDR
This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations and the FCL-Net achieves the better predictive performance than traditional approaches.
Abstract
Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependencies, temporal dependencies, and exogenous dependencies need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependencies within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. The experimental results, validated on the real-world data provided by DiDi Chuxing, show that the FCL-Net achieves the better predictive performance than traditional approaches including both classical time-series prediction models and state-of-art machine learning algorithms (e.g., artificial neural network, XGBoost, LSTM and CNN). Furthermore, the consideration of exogenous variables in addition to the passenger demand itself, such as the travel time rate, time-of-day, day-of-week, and weather conditions, is proven to be promising, since they reduce the root mean squared error (RMSE) by 48.3%. It is also interesting to find that the feature selection reduces 24.4% in the training time and leads to only the 1.8% loss in the forecasting accuracy measured by RMSE in the proposed model. This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.

read more

Citations
More filters
Journal ArticleDOI

T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction

TL;DR: In this article, a novel neural network-based traffic forecasting method, the temporal graph convolutional network (T-GCN) model, which is combined with the graph convolutionsal network and the gated recurrent unit (GRU), is proposed.
Journal ArticleDOI

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting

TL;DR: The spatiotemporal multi-graph convolution network (ST-MGCN), a novel deep learning model for ride-hailing demand forecasting, is proposed which first encode the non-Euclidean pair-wise correlations among regions into multiple graphs and then explicitly model these correlations using multi- graph convolution.
Journal ArticleDOI

A survey on deep learning and its applications

TL;DR: The structural principle, the characteristics, and some kinds of classic models of deep learning, such as stacked auto encoder, deep belief network, deep Boltzmann machine, and convolutional neural network are described.
Journal ArticleDOI

Ridesourcing systems: A framework and review

TL;DR: In this paper, a general framework to describe ridesourcing systems is proposed, which can aid understanding of the interactions between endogenous and exogenous variables, their changes in response to platforms' operational strategies and decisions, multiple system objectives, and market equilibria in a dynamic manner.
Journal ArticleDOI

Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach

TL;DR: A novel Graph Convolutional Neural Network with Data-driven Graph Filter (GCNN-DDGF) model that can learn hidden heterogeneous pairwise correlations between stations to predict station-level hourly demand in a large-scale bike-sharing network is proposed.
References
More filters
Journal ArticleDOI

Random Forests

TL;DR: Internal estimates monitor error, strength, and correlation and these are used to show the response to increasing the number of features used in the forest, and are also applicable to regression.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Journal Article

Scikit-learn: Machine Learning in Python

TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Related Papers (5)