scispace - formally typeset
Open AccessJournal ArticleDOI

Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans

Reads0
Chats0
TLDR
Given the markedly lower training volume in the SIT group, these data suggest that high‐intensity interval training is a time‐efficient strategy to increase skeletal muscle oxidative capacity and induce specific metabolic adaptations during exercise that are comparable to traditional ET.
Abstract
Low-volume ‘sprint’ interval training (SIT) stimulates rapid improvements in muscle oxidative capacity that are comparable to levels reached following traditional endurance training (ET) but no study has examined metabolic adaptations during exercise after these different training strategies. We hypothesized that SIT and ET would induce similar adaptations in markers of skeletal muscle carbohydrate (CHO) and lipid metabolism and metabolic control during exercise despite large differences in training volume and time commitment. Active but untrained subjects (23 ± 1 years) performed a constant-load cycling challenge (1 h at 65% of peak oxygen uptake ( ˙ VO2peak) before and after 6 weeks of either SIT or ET (n = 5 men and 5 women per group). SIT consisted of four to six repeats of a 30 s ‘all out’ Wingate Test (mean power output ∼500 W) with 4.5 min recovery between repeats, 3 days per week. ET consisted of 40‐60 min of continuous cycling at a workload that elicited ∼65% ˙ VO2peak (mean power output ∼150 W) per day, 5 days per week. Weekly time commitment (∼1.5 versus ∼4.5 h) and total training volume (∼225 versus ∼2250 kJ week −1 ) were substantially lower in SIT versus ET. Despite these differences, both protocols induced similar increases (P < 0.05) in mitochondrial markers for skeletal muscle CHO (pyruvate dehydrogenase E1α protein content) and lipid oxidation (3-hydroxyacyl CoA dehydrogenase maximal activity) and protein content of peroxisome proliferator-activated receptor-γ coactivator-1α. Glycogen and phosphocreatine utilization during exercise were reduced after training, and calculated rates of whole-body CHO and lipid oxidation were decreased and increased, respectively, with no differences between groups (all main effects, P < 0.05). Given the markedly lower training volume in the SIT group, these data suggest that high-intensity interval training is a time-efficient strategy to increase skeletal muscle oxidative capacity and induce specific metabolic adaptations during exercise that are comparable to traditional ET.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

High-intensity exercise attenuates postprandial lipaemia and markers of oxidative stress

TL;DR: High-intensity intermittent exercise attenuates postprandial TAG and markers of oxidative stress after the consumption of a high-fat meal and is found to be a more effective method to improve health.
Journal ArticleDOI

High-Intensity Interval Training Performed by Young Athletes: A Systematic Review and Meta-Analysis

TL;DR: The present findings suggest that young athletes performing HIIT may improve certain important variables related to aerobic, as well as anaerobic, performance as it requires less time per training session leaving more time for training sport specific skills.
Journal Article

The Effect of Training Intensity on VO2max in Young Healthy Adults: A Meta-Regression and Meta-Analysis

TL;DR: Exercise training intensity has no effect on the magnitude of training-induced increases in maximal oxygen uptake in young healthy human participants, but similar adaptations can be achieved in low training doses at higher exercise intensities than higher training doses of lower intensity (endurance training).
Journal ArticleDOI

Changes in cycling efficiency during a competitive season.

TL;DR: GE changes over the course of a competitive cycling season and is related to the volume and intensity of training conducted, with Riders who spent the most time training between LT and OBLA intensities better able to maintain GE.
References
More filters
Journal ArticleDOI

A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding

TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.
Journal ArticleDOI

ACSM Position Stand: The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults

TL;DR: The combination of frequency, intensity, and duration of exercise is found to be the most important factor in determining the intensity and quality of exercise a person receives.
Journal ArticleDOI

Short‐term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance

TL;DR: Data demonstrate that SIT is a time‐efficient strategy to induce rapid adaptations in skeletal muscle and exercise performance that are comparable to ET in young active men.
Journal Article

Table of nonprotein respiratory quotient: an update.

TL;DR: The purpose of this paper is to point out some limits and inconsistencies in the table of nonprotein respiratory quotient that is universally used, developed by Lusk in 1924, which was derived from biochemical and physical data that are now outdated.
Related Papers (5)