scispace - formally typeset
Journal ArticleDOI

SnO2/Reduced Graphene Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(II), Lead(II), Copper(II), and Mercury(II): An Interesting Favorable Mutual Interference

TLDR
In this paper, a well-known gas sensing material SnO2 in combination with reduced graphene oxide was used in heavy metal ions detection for the first time, which could be used for the simultaneous and selective electrochemical detection of ultratrace Cd(II), Pb(II, Cu(II) and Hg(II).
Abstract
A well-known gas sensing material SnO2 in combination with reduced graphene oxide was used in heavy metal ions detection for the first time. This work reports the detailed study on the SnO2/reduced graphene oxide nanocomposite modified glass carbon electrode, which could be used for the simultaneous and selective electrochemical detection of ultratrace Cd(II), Pb(II), Cu(II), and Hg(II) in drinking water. The SnO2/reduced graphene oxide nanocomposite electrode was characterized voltammetrically using redox couples (Fe(CN)63–/4–), complemented with electrochemical impedance spectroscopy (EIS). Square wave anodic stripping voltammetry (SWASV) has been used for the detection of Cd(II), Pb(II), Cu(II), and Hg(II). The detection limit (3σ method) of the SnO2/reduced graphene oxide nanocomposite modified GCE toward Cd(II), Pb(II), Cu(II) and Hg(II) is 1.015 × 10–10 M, 1.839 × 10–10 M, 2.269 × 10–10 M, and 2.789 × 10–10 M, respectively, which is very well below the guideline value given by the World Health Organ...

read more

Citations
More filters
Journal ArticleDOI

A review on detection of heavy metal ions in water – An electrochemical approach

TL;DR: In this article, the toxicity mechanisms of various metal ions and their relationship towards the induction of oxidative stress have been summarized, and electrochemical biosensors employed in the detection of metal ions with various interfaces have been highlighted.
Journal ArticleDOI

A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms

TL;DR: This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques.
Journal ArticleDOI

Graphene electrochemistry: fundamental concepts through to prominent applications

TL;DR: Graphene Electrochemistry as discussed by the authors is an area of interest in the field of electrochemistry, where graphene has been reported to be beneficial in various applications ranging from sensing through to energy storage and generation and carbon based molecular electronics.
Journal ArticleDOI

Flexible Graphene-Based Wearable Gas and Chemical Sensors

TL;DR: The role of graphene in fabricating flexible gas sensors for the detection of various hazardous gases, including nitrogen dioxide, ammonia, hydrogen, hydrogen sulfide, carbon dioxide, sulfur dioxide, and humidity in wearable technology, is discussed.
Journal ArticleDOI

Nanostructured Sensors for Detection of Heavy Metals: A Review

TL;DR: In this article, the authors present a recent advance in optical, electrochemical and field-effect transistor sensors for heavy metal detection, focusing on colorimetric, fluorescent, surface-enhanced Raman scattering and surface plasmon resonance devices.
References
More filters
Journal ArticleDOI

Structure of Graphite Oxide Revisited

TL;DR: In this paper, the authors used 13C and 1H NMR spectra of graphite oxide derivatives to confirm the assignment of the 70 ppm line to C−OH groups and allow them to propose a new structural model for graphite oxides.
Journal ArticleDOI

TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide

TL;DR: The photocatalytic methodology not only provides an on-demand UV-assisted reduction technique but also opens up new ways to obtain photoactive graphene-semiconductor composites.
Journal ArticleDOI

Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure

TL;DR: The dimensional confinement of tin oxide nanoparticles by the surrounding GNS limits the volume expansion upon lithium insertion, and the developed pores between SnO(2) and GNS could be used as buffered spaces during charge/discharge, resulting in the superior cyclic performances.
Journal ArticleDOI

Graphene−Metal Particle Nanocomposites

TL;DR: In this article, a general approach for the preparation of graphene−metal particle nanocomposites in a water−ethylene glycol system using graphene oxide as a precursor and metal nanoparticles (Au, Pt and Pd) as building blocks.
Related Papers (5)