scispace - formally typeset
Journal ArticleDOI

Structure shape and stability of nanometric sized particles

TLDR
In this paper, the shape and structure of nanometer-sized particles are discussed, such as the octahedron and truncated octahedral, the icosahedron, the marks decahedric, the truncated “star-like” decahedral and the regular decahingric.
Abstract
Nanoparticles are a state of matter that has properties different from either molecules or bulk solids. In the present work, we review the shape and structure of nanometer-sized particles; several shapes are discussed, such as the octahedron and truncated octahedron, the icosahedron, the Marks decahedron, the truncated “star-like” decahedron, the rounded decahedron and the regular decahedron. Experimental high-resolution transmission electron microscopy (TEM) images of each type of particle are presented together with the Fast Fourier Transform and a model of the particle. We consider only gold particles grown by vapor deposition or by colloidal methods. High-resolution TEM images of the particles in different orientations are shown. We discuss two basic types of particles uncapped and capped. Data for other metals and semiconductors are reviewed. We have also performed very extensive simulations obtaining the total energy and pair correlation functions for each cluster under study. Furthermore, distributions of single atom energy for every cluster are displayed in order to reveal the effect of surface on the stability of different types and sizes of clusters. We discuss the structure of the particles from ∼1 to ∼100 nm. The mechanisms for stress release as the particles grow larger are reviewed and a mechanism is suggested. Finally, we discuss the parameters that define the shape of a nanoparticle and the possible implications in technological applications.Nanoparticles are a state of matter that has properties different from either molecules or bulk solids. In the present work, we review the shape and structure of nanometer-sized particles; several shapes are discussed, such as the octahedron and truncated octahedron, the icosahedron, the Marks decahedron, the truncated “star-like” decahedron, the rounded decahedron and the regular decahedron. Experimental high-resolution transmission electron microscopy (TEM) images of each type of particle are presented together with the Fast Fourier Transform and a model of the particle. We consider only gold particles grown by vapor deposition or by colloidal methods. High-resolution TEM images of the particles in different orientations are shown. We discuss two basic types of particles uncapped and capped. Data for other metals and semiconductors are reviewed. We have also performed very extensive simulations obtaining the total energy and pair correlation functions for each cluster under study. Furthermore, distribut...

read more

Citations
More filters
Journal ArticleDOI

The bactericidal effect of silver nanoparticles

TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Journal ArticleDOI

Shape‐Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?

TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Journal ArticleDOI

Green synthesis of metal nanoparticles using plants

TL;DR: Most of the plants used in metal nanoparticle synthesis are shown in this article, and the advantages of using plant and plant-derived materials for biosynthesis of metal nanoparticles have interested researchers to investigate mechanisms of metal ions uptake and bioreduction by plants, and to understand the possible mechanism of nanoparticle formation in plants.
Journal ArticleDOI

Structure of a thiol monolayer-protected gold nanoparticle at 1.1 A resolution

TL;DR: The crystallization and x-ray structure determination of a p-mercaptobenzoic acid–protected gold nanoparticle, which comprises 102 gold atoms and 44 p-MBAs, is reported, which is chiral, with the two enantiomers alternating in the crystal lattice.
Journal ArticleDOI

Shape effects in plasmon resonance of individual colloidal silver nanoparticles

TL;DR: In this paper, the effect of size and shape on the spectral response of individual silver nanoparticles was studied and it was shown that specific geometrical shapes give distinct spectral responses.
References
More filters
Journal ArticleDOI

Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system

TL;DR: Using two-phase reduction of AuCl4 by sodium borohydride in the presence of an alkanethiol, solutions of 1-3 nm gold particles bearing a surface coating of thiol have been prepared and characterised; this novel material can be handled as a simple chemical compound as mentioned in this paper.
Journal ArticleDOI

A DNA-based Method for Rationally Assembling Nanoparticles Into Macroscopic Materials

TL;DR: A method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition is described.
Journal ArticleDOI

Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods

TL;DR: In this paper, the surface plasmon absorption of noble metal nanoparticles was studied and the effects of size, shape, and composition on the plasman absorption maximum and its bandwidth were discussed.
Journal ArticleDOI

Tight-binding potentials for transition metals and alloys.

TL;DR: The parameters of many-body potentials for fcc and hcp transition metals, based on the second-moment approximation of a tight-binding Hamiltonian, have been systematically evaluated and good quantitative agreement with the experimental data up to temperatures close to the melting point is found.
Journal ArticleDOI

Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly

TL;DR: In this article, the authors used combinatorial phage display libraries to evolve peptides that bind to a range of semiconductor surfaces with high specificity, depending on the crystallographic orientation and composition of the structurally similar materials.
Related Papers (5)