scispace - formally typeset
Open AccessJournal ArticleDOI

Tailored anomalous group-velocity dispersion in silicon channel waveguides

TLDR
The first experimental demonstration of anomalous group-velocity dispersion (GVD) in silicon waveguides across the telecommunication bands is presented and it is shown that the GVD can be tuned from -2000 to 1000 ps/(nm*km) by tailoring the cross-sectional size and shape of the waveguide.
Abstract
We present the first experimental demonstration of anomalous group-velocity dispersion (GVD) in silicon waveguides across the telecommunication bands. We show that the GVD in such waveguides can be tuned from -2000 to 1000 ps/(nm·km) by tailoring the cross-sectional size and shape of the waveguide.

read more

Citations
More filters
Journal ArticleDOI

Silicon microring resonators

TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Journal ArticleDOI

Nonlinear silicon photonics

TL;DR: In this article, a review of nonlinear effects in silicon and highlights the important applications and technological solutions in nonlinear silicon photonics is presented. But the authors do not discuss the nonlinearities in silicon.
Journal ArticleDOI

CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects

TL;DR: In this paper, the authors demonstrate the first monolithically integrated CMOS-compatible source by creating an optical parametric oscillator formed by a silicon nitride ring resonator on silicon.
Journal ArticleDOI

Broad-band optical parametric gain on a silicon photonic chip

TL;DR: Net on/off gain over a wavelength range of 28 nm is demonstrated through the optical process of phase-matched four-wave mixing in suitably designed SOI channel waveguides, allowing for the implementation of dense wavelength division multiplexing in an all-silicon photonic integrated circuit.
Journal ArticleDOI

Nonlinear optical phenomena in silicon waveguides: Modeling and applications

TL;DR: A unified theoretical platform that not only can be used for understanding the underlying physics but should also provide guidance toward new and useful applications is provided.
References
More filters
Journal ArticleDOI

Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm

TL;DR: In this article, the authors demonstrate experimentally that air-silica microstructure optical fibers can exhibit anomalous dispersion at visible wavelengths, and exploit this feature to generate an optical continuum 550 THz in width, extending from the violet to the infrared.
Journal ArticleDOI

All-optical control of light on a silicon chip

TL;DR: The experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index and confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.
Journal ArticleDOI

Active control of slow light on a chip with photonic crystal waveguides

TL;DR: An over 300-fold reduction of the group velocity on a silicon chip via an ultra-compact photonic integrated circuit using low-loss silicon photonic crystal waveguides that can support an optical mode with a submicrometre cross-section is experimentally demonstrated.
Journal ArticleDOI

Nanotaper for compact mode conversion.

TL;DR: It is shown that the micrometer-long silicon-on-insulator-based nanotaper coupler is able to efficiently convert both the mode field profile and the effective index, with a total length as short as 40 microm, during compact mode conversion between a fiber and a submicrometer waveguide.
Related Papers (5)