scispace - formally typeset
Journal ArticleDOI

Tailoring the photoluminescence of atomically precise nanoclusters.

Xi Kang, +1 more
- 15 Apr 2019 - 
- Vol. 48, Iss: 8, pp 2422-2457
Reads0
Chats0
TLDR
Promising applications of metal nanoclusters are reviewed, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling, and scope for improvements and future perspectives of these novel nanomaterials are highlighted.
Abstract
Due to their atomically precise structures and intriguing chemical/physical properties, metal nanoclusters are an emerging class of modular nanomaterials. Photo-luminescence (PL) is one of their most fascinating properties, due to the plethora of promising PL-based applications, such as chemical sensing, bio-imaging, cell labeling, phototherapy, drug delivery, and so on. However, the PL of most current nanoclusters is still unsatisfactory-the PL quantum yield (QY) is relatively low (generally lower than 20%), the emission lifetimes are generally in the nanosecond range, and the emitted color is always red (emission wavelengths of above 630 nm). To address these shortcomings, several strategies have been adopted, and are reviewed herein: capped-ligand engineering, metallic kernel alloying, aggregation-induced emission, self-assembly of nanocluster building blocks into cluster-based networks, and adjustments on external environment factors. We further review promising applications of these fluorescent nanoclusters, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling. Finally, scope for improvements and future perspectives of these novel nanomaterials are highlighted as well. Our intended audience is the broader scientific community interested in the fluorescence of metal nanoclusters, and our review hopefully opens up new horizons for these scientists to manipulate PL properties of nanoclusters. This review is based on publications available up to December 2018.

read more

Citations
More filters
Journal ArticleDOI

Atomically precise alloy nanoclusters: syntheses, structures, and properties.

TL;DR: This review provides a comprehensive synthetic toolbox and controllable doping modes so as to achieve more alloy nanoclusters with customized compositions, structures, and properties for applications.
Journal ArticleDOI

AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters

TL;DR: This paper designed a pair of chiral alkynyl ligands, (R/S)-2-diphenyl-2-hydroxylmethylpyrrolidine-1-propyne (abbreviated as R/S-DPM), and for the first time, successfully prepared and characterized single crystals of optically pure enantiomeric pair of atomically-precise copper(I) clusters.
Journal ArticleDOI

Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency

TL;DR: Enantiomers of an octahedral Ag6 cluster prepared via one-step synthesis using designed chiral ligands at ambient temperature are reported, revealing that thermally activated delayed fluorescence is responsible for the high PLQY, which combines chirality in excited states to generate strong circularly polarized luminescence.
Journal ArticleDOI

Endohedrally Doped Cage Clusters

TL;DR: This comprehensive review presents results of many such developments in this fast-growing field including endohedrally doped Al, Ga, and In clusters, and performs ab initio calculations to present updated results of the most stable atomic structures and fundamental electronic properties of the endohedral doped cage clusters.
Journal ArticleDOI

A New Class of NIR-II Gold Nanocluster-Based Protein Biolabels for In Vivo Tumor-Targeted Imaging.

TL;DR: The renal-clearable and host-guest recognition-based NIR-II biolabels developed in this study provide a promising platform to monitor the physiological behaviors of biomolecules in living organisms.
References
More filters
Journal ArticleDOI

Surface Single-Atom Tailoring of a Gold Nanoparticle.

TL;DR: The first realization of the introduction of a single sulfur atom onto the surface of the structure-unraveled Au60S6(SCH2Ph)36 nanoparticle is reported, which leads to the changes of both internal structure and crystallographic arrangement.
Journal ArticleDOI

Towards Ultra‐Bright Gold Nanoclusters

TL;DR: In this paper, the brightness of gold nanoparticles has been investigated and different approaches have been proposed to enhance this poor photoluminescence quantum yield aiming to achieve ultra-bright gold nano-dots with features superior to conventional dyes.
Journal ArticleDOI

Ultrafast static and diffusion-controlled electron transfer at Ag29 nanocluster/molecular acceptor interfaces

TL;DR: Interestingly, these femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs.
Journal ArticleDOI

Combining the Single-Atom Engineering and Ligand-Exchange Strategies: Obtaining the Single-Heteroatom-Doped Au16Ag1(S-Adm)13 Nanocluster with Atomically Precise Structure.

TL;DR: This work reported a new Au16Ag1(S-Adm)13 NC, which is synthesized by the combination of single-atom engineering and ligand-exchange strategies and is so far the smallest crystallographically characterized Au-based NC protected by thiolate.
Journal ArticleDOI

Two-Way Transformation between fcc- and Nonfcc-Structured Gold Nanoclusters

TL;DR: A novel synthesis method is developed, successfully fulfilled the two-way structure transformation, and a novel gold nanocluster was synthesized and structurally resolved by single-crystal X-ray crystallography.
Related Papers (5)