scispace - formally typeset
Journal ArticleDOI

Tailoring the photoluminescence of atomically precise nanoclusters.

Xi Kang, +1 more
- 15 Apr 2019 - 
- Vol. 48, Iss: 8, pp 2422-2457
Reads0
Chats0
TLDR
Promising applications of metal nanoclusters are reviewed, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling, and scope for improvements and future perspectives of these novel nanomaterials are highlighted.
Abstract
Due to their atomically precise structures and intriguing chemical/physical properties, metal nanoclusters are an emerging class of modular nanomaterials. Photo-luminescence (PL) is one of their most fascinating properties, due to the plethora of promising PL-based applications, such as chemical sensing, bio-imaging, cell labeling, phototherapy, drug delivery, and so on. However, the PL of most current nanoclusters is still unsatisfactory-the PL quantum yield (QY) is relatively low (generally lower than 20%), the emission lifetimes are generally in the nanosecond range, and the emitted color is always red (emission wavelengths of above 630 nm). To address these shortcomings, several strategies have been adopted, and are reviewed herein: capped-ligand engineering, metallic kernel alloying, aggregation-induced emission, self-assembly of nanocluster building blocks into cluster-based networks, and adjustments on external environment factors. We further review promising applications of these fluorescent nanoclusters, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling. Finally, scope for improvements and future perspectives of these novel nanomaterials are highlighted as well. Our intended audience is the broader scientific community interested in the fluorescence of metal nanoclusters, and our review hopefully opens up new horizons for these scientists to manipulate PL properties of nanoclusters. This review is based on publications available up to December 2018.

read more

Citations
More filters
Journal ArticleDOI

Atomically precise alloy nanoclusters: syntheses, structures, and properties.

TL;DR: This review provides a comprehensive synthetic toolbox and controllable doping modes so as to achieve more alloy nanoclusters with customized compositions, structures, and properties for applications.
Journal ArticleDOI

AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters

TL;DR: This paper designed a pair of chiral alkynyl ligands, (R/S)-2-diphenyl-2-hydroxylmethylpyrrolidine-1-propyne (abbreviated as R/S-DPM), and for the first time, successfully prepared and characterized single crystals of optically pure enantiomeric pair of atomically-precise copper(I) clusters.
Journal ArticleDOI

Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency

TL;DR: Enantiomers of an octahedral Ag6 cluster prepared via one-step synthesis using designed chiral ligands at ambient temperature are reported, revealing that thermally activated delayed fluorescence is responsible for the high PLQY, which combines chirality in excited states to generate strong circularly polarized luminescence.
Journal ArticleDOI

Endohedrally Doped Cage Clusters

TL;DR: This comprehensive review presents results of many such developments in this fast-growing field including endohedrally doped Al, Ga, and In clusters, and performs ab initio calculations to present updated results of the most stable atomic structures and fundamental electronic properties of the endohedral doped cage clusters.
Journal ArticleDOI

A New Class of NIR-II Gold Nanocluster-Based Protein Biolabels for In Vivo Tumor-Targeted Imaging.

TL;DR: The renal-clearable and host-guest recognition-based NIR-II biolabels developed in this study provide a promising platform to monitor the physiological behaviors of biomolecules in living organisms.
References
More filters
Journal ArticleDOI

Simultaneous hetero-atom doping and foreign-thiolate exchange on the Au25(SR)18 nanocluster.

TL;DR: This work will hopefully shed light on the preparation of alloy NCs with intriguing functions by doping the Au25(SR)18 NC with Ag-SR' complexes and functionalizing the capped ligands and alloys the metallic kernel at the same time.
Journal ArticleDOI

The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

TL;DR: In this paper, the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin and negatively charged silver nanoclusters (Ag29 NCs) was explored.
Journal ArticleDOI

Probing the Mechanical Response of Luminescent Dithiol-Protected Ag29(BDT)12(TPP)4 Cluster Crystals

TL;DR: In this paper, the mechanical properties of Ag29(BDT)12(TPP)4 cluster were investigated under both quasi-static and dynamic loading conditions, and the measured reduced Young's modulus (Er) and hardness (H) were 4.48 and 0.285 GPa, respectively, similar to those of polymers and much smaller than the values for bulk silver.
Journal ArticleDOI

Atomically precise cluster-based white light emitters $$^{\S }$$ §

TL;DR: In this paper, the authors used thiol/phosphine protected red luminescent silver nanoclusters (Ag NCs) as one of the fluorophores for white light emission.
Related Papers (5)