scispace - formally typeset
Open AccessJournal ArticleDOI

The ages and metallicities of galaxies in the local universe

Reads0
Chats0
TLDR
In this paper, the authors derived stellar metallicities, light-weighted ages and stellar masses for a magnitude-limited sample of 175 128 galaxies drawn from the Sloan Digital Sky Survey Data Release Two (SDSS DR2).
Abstract
We derive stellar metallicities, light-weighted ages and stellar masses for a magnitude-limited sample of 175 128 galaxies drawn from the Sloan Digital Sky Survey Data Release Two (SDSS DR2). We compute the median-likelihood estimates of these parameters using a large library of model spectra at medium‐high resolution, covering a comprehensive range of star formation histories. The constraints we derive are set by the simultaneous fit of five spectral absorption features, which are well reproduced by our population synthesis models. By design, these constraints depend only weakly on the α/Fe element abundance ratio. Our sample includes galaxies of all types spanning the full range in star formation activity, from dormant early-type to actively star-forming galaxies. By analysing a subsample of 44 254 high-quality spectra, we show that, in the mean, galaxies follow a sequence of increasing stellar metallicity, age and stellar mass at increasing 4000-A break strength. For galaxies of intermediate mass, stronger Balmer absorption at fixed 4000-A break strength is associated with higher metallicity and younger age. We investigate how stellar metallicity and age depend on total galaxy stellar mass. Low-mass galaxies are typically young and metal-poor, massive galaxies old and metalrich, with a rapid transition between these regimes over the stellar mass range 3 × 10 9 M ∗ 3 × 10 10 M� . Both high- and low-concentration galaxies follow these relations, but there is a large dispersion in stellar metallicity at fixed stellar mass, especially for low-concentration galaxies of intermediate mass. Despite the large scatter, the relation between stellar metallicity and stellar mass is similar to the correlation between gas-phase oxygen abundance and stellar mass for star-forming galaxies. This is confirmed by the good correlation between stellar metallicity and gas-phase oxygen abundance for galaxies with both measures. The substantial range in stellar metallicity at fixed gas-phase oxygen abundance suggests that gas ejection and/or accretion are important factors in galactic chemical evolution. Ke yw ords: galaxies: evolution ‐ galaxies: formation ‐ galaxies: stellar content.

read more

Citations
More filters
Journal ArticleDOI

The host galaxies and classification of active galactic nuclei

TL;DR: In this paper, the authors present an analysis of the host properties of 85224 emission-line galaxies selected from the Sloan Digital Sky Survey and derive a new empirical classification scheme which cleanly separates star-forming galaxies, composite AGN-H ii galaxies, Seyferts and LINERs and study the host galaxy properties of these different classes of objects.
Journal ArticleDOI

Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe

TL;DR: The Illustris Project as mentioned in this paper is a series of large-scale hydrodynamical simulations of galaxy formation, which includes primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei.
Journal ArticleDOI

Mass and environment as drivers of galaxy evolution in SDSS and zCOSMOS and the origin of the Schechter function

TL;DR: In this paper, the authors explore the simple interrelationships between mass, star formation rate, and environment in the SDSS, zCOSMOS, and other deep surveys.
Journal ArticleDOI

Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies

TL;DR: In this article, the effect of metallicity calibrations, AGN classification, and aperture covering fraction on the local mass-metallicity relation using 27,730 star-forming galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 4.
References
More filters
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds

TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Journal ArticleDOI

Stellar population synthesis at the resolution of 2003

TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical Summary

Donald G. York
- 27 Jun 2000 - 
TL;DR: The Sloan Digital Sky Survey (SDSS) as mentioned in this paper provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical summary

Donald G. York, +151 more
TL;DR: The Sloan Digital Sky Survey (SDSS) as discussed by the authors provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag.
Related Papers (5)

The Sloan Digital Sky Survey: Technical summary

Donald G. York, +151 more