scispace - formally typeset
Open AccessJournal ArticleDOI

The Central Executioner of Apoptosis: Multiple Connections between Protease Activation and Mitochondria in Fas/APO-1/CD95- and Ceramide-induced Apoptosis

Reads0
Chats0
TLDR
A protease activation pathway with the mitochondrial phase of apoptosis regulation is connected, providing a plausible explanation of why Bcl-2 fails to interfere with Fas-triggered apoptosis in most cell types, yet prevents ceramide- and prooxidant-induced apoptosis.cmk.
Abstract
According to current understanding, cytoplasmic events including activation of protease cascades and mitochondrial permeability transition (PT) participate in the control of nuclear apoptosis. However, the relationship between protease activation and PT has remained elusive. When apoptosis is induced by cross-linking of the Fas/APO-1/CD95 receptor, activation of interleukin-1β converting enzyme (ICE; caspase 1) or ICE-like enzymes precedes the disruption of the mitochondrial inner transmembrane potential (ΔΨm). In contrast, cytosolic CPP32/ Yama/Apopain/caspase 3 activation, plasma membrane phosphatidyl serine exposure, and nuclear apoptosis only occur in cells in which the ΔΨm is fully disrupted. Transfection with the cowpox protease inhibitor crmA or culture in the presence of the synthetic ICE-specific inhibitor Ac-YVAD.cmk both prevent the ΔΨm collapse and subsequent apoptosis. Cytosols from anti-Fas–treated human lymphoma cells accumulate an activity that induces PT in isolated mitochondria in vitro and that is neutralized by crmA or Ac-YVAD.cmk. Recombinant purified ICE suffices to cause isolated mitochondria to undergo PT-like large amplitude swelling and to disrupt their ΔΨm. In addition, ICE-treated mitochondria release an apoptosis-inducing factor (AIF) that induces apoptotic changes (chromatin condensation and oligonucleosomal DNA fragmentation) in isolated nuclei in vitro. AIF is a protease (or protease activator) that can be inhibited by the broad spectrum apoptosis inhibitor Z-VAD.fmk and that causes the proteolytical activation of CPP32. Although Bcl-2 is a highly efficient inhibitor of mitochondrial alterations (large amplitude swelling + ΔΨm collapse + release of AIF) induced by prooxidants or cytosols from ceramide-treated cells, it has no effect on the ICE-induced mitochondrial PT and AIF release. These data connect a protease activation pathway with the mitochondrial phase of apoptosis regulation. In addition, they provide a plausible explanation of why Bcl-2 fails to interfere with Fas-triggered apoptosis in most cell types, yet prevents ceramide- and prooxidant-induced apoptosis.

read more

Citations
More filters
Journal ArticleDOI

Molecular characterization of mitochondrial apoptosis-inducing factor

TL;DR: The identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei is reported, indicating that AIF is a mitochondrial effector of apoptotic cell death.
Journal ArticleDOI

Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors

TL;DR: The purification of a cytosolic protein that induces cytochrome c release from mitochondria in response to caspase-8, the apical caspases activated by cell surface death receptors such as Fas and TNF is reported.
Journal ArticleDOI

Two CD95 (APO-1/Fas) signaling pathways

TL;DR: In the presence of caspase‐3 the amount of active casp enzyme‐8 generated at the DISC determines whether a mitochondria‐independent apoptosis pathway is used (type I cells) or not (type II cells).
Journal ArticleDOI

Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy.

TL;DR: Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.
Journal ArticleDOI

The mitochondrial death/life regulator in apoptosis and necrosis

TL;DR: The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from mitochondria.
References
More filters
Journal ArticleDOI

Apoptosis in the pathogenesis and treatment of disease

TL;DR: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death, and recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases.
Journal ArticleDOI

Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.

TL;DR: Control elements of the tetracycline-resistance operon encoded in Tn10 of Escherichia coli have been utilized to establish a highly efficient regulatory system in mammalian cells that is suitable for creation of "on/off" situations for such genes in a reversible way.
Journal ArticleDOI

Induction of apoptotic program in cell-free extracts : requirement for datp and cytochrome c

TL;DR: Cells undergoing apoptosis in vivo showed increased release of cy tochrome c to their cytosol, suggesting that mitochondria may function in apoptosis by releasing cytochrome c.
Journal ArticleDOI

The Fas Death Factor

TL;DR: Fas ligand (FasL), a cell surface molecule belonging to the tumor necrosis factor family, binds to its receptor Fas, thus inducing apoptosis of Fas-bearing cells.
Journal ArticleDOI

Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis

TL;DR: A potent peptide aldehyde inhibitor has been developed and shown to prevent apoptotic events in vitro, suggesting that apopain/CPP32 is important for the initiation of apoptotic cell death.
Related Papers (5)