scispace - formally typeset
Open AccessJournal ArticleDOI

Two CD95 (APO-1/Fas) signaling pathways

TLDR
In the presence of caspase‐3 the amount of active casp enzyme‐8 generated at the DISC determines whether a mitochondria‐independent apoptosis pathway is used (type I cells) or not (type II cells).
Abstract
We have identified two cell types, each using almost exclusively one of two different CD95 (APO‐1/Fas) signaling pathways. In type I cells, caspase‐8 was activated within seconds and caspase‐3 within 30 min of receptor engagement, whereas in type II cells cleavage of both caspases was delayed for ∼60 min. However, both type I and type II cells showed similar kinetics of CD95‐mediated apoptosis and loss of mitochondrial transmembrane potential (ΔΨ m ). Upon CD95 triggering, all mitochondrial apoptogenic activities were blocked by Bcl‐2 or Bcl‐x L overexpression in both cell types. However, in type II but not type I cells, overexpression of Bcl‐2 or Bcl‐x L blocked caspase‐8 and caspase‐3 activation as well as apoptosis. In type I cells, induction of apoptosis was accompanied by activation of large amounts of caspase‐8 by the death‐inducing signaling complex (DISC), whereas in type II cells DISC formation was strongly reduced and activation of caspase‐8 and caspase‐3 occurred following the loss of ΔΨ m . Overexpression of caspase‐3 in the caspase‐3‐negative cell line MCF7‐Fas, normally resistant to CD95‐mediated apoptosis by overexpression of Bcl‐x L , converted these cells into true type I cells in which apoptosis was no longer inhibited by Bcl‐x L . In summary, in the presence of caspase‐3 the amount of active caspase‐8 generated at the DISC determines whether a mitochondria‐independent apoptosis pathway is used (type I cells) or not (type II cells).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The biochemistry of apoptosis

TL;DR: The basic components of the death machinery are reviewed, how they interact to regulate apoptosis in a coordinated manner is described, and the main pathways that are used to activate cell death are discussed.
Journal ArticleDOI

The Bcl-2 Protein Family: Arbiters of Cell Survival

TL;DR: Bcl-2 and related cytoplasmic proteins are key regulators of apoptosis, the cell suicide program critical for development, tissue homeostasis, and protection against pathogens.
Journal ArticleDOI

Cell Death: Critical Control Points

TL;DR: The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.
Journal ArticleDOI

Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis

TL;DR: The results indicate that BID is a mediator of mitochondrial damage induced by Casp8, and coexpression of BclxL inhibits all the apoptotic changes induced by tBID.
Journal ArticleDOI

Molecular characterization of mitochondrial apoptosis-inducing factor

TL;DR: The identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei is reported, indicating that AIF is a mitochondrial effector of apoptotic cell death.
References
More filters
Journal ArticleDOI

Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade

TL;DR: Mutation of the active site of caspase-9 attenuated the activation of cazase-3 and cellular apoptotic response in vivo, indicating that casp enzyme-9 is the most upstream member of the apoptotic protease cascade that is triggered by cytochrome c and dATP.
Journal ArticleDOI

Induction of apoptotic program in cell-free extracts : requirement for datp and cytochrome c

TL;DR: Cells undergoing apoptosis in vivo showed increased release of cy tochrome c to their cytosol, suggesting that mitochondria may function in apoptosis by releasing cytochrome c.
Journal ArticleDOI

Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked

TL;DR: One possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria, which is normally located in the mitochondrial intermembrane space.
Journal ArticleDOI

The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis

TL;DR: In a cell-free apoptosis system, mitochondria spontaneously released cytochrome c, which activated DEVD-specific caspases, leading to fodrin cleavage and apoptotic nuclear morphology, and Bcl-2 acts to inhibit cy tochrome c translocation, thereby blocking caspase activation and the apoptotic process.
Journal ArticleDOI

Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3

TL;DR: The purification and cDNA cloning of Apaf-1, a novel 130 kd protein from HeLa cell cytosol that participates in the cytochrome c-dependent activation of caspase-3, leading to apoptosis is reported here.
Related Papers (5)