scispace - formally typeset
Journal ArticleDOI

The evolution and explosion of massive stars

TLDR
In this article, the authors examined the current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics, and focused on their post-helium-burning evolution.
Abstract
amount of energy, a tiny fraction of which is sufficient to explode the star as a supernova. The authors examine our current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics. Emphasis is placed upon their post-helium-burning evolution. Current views regarding the supernova explosion mechanism are reviewed, and the hydrodynamics of supernova shock propagation and ‘‘fallback’’ is discussed. The calculated neutron star masses, supernova light curves, and spectra from these model stars are shown to be consistent with observations. During all phases, particular attention is paid to the nucleosynthesis of heavy elements. Such stars are capable of producing, with few exceptions, the isotopes between mass 16 and 88 as well as a large fraction of still heavier elements made by the r and p processes.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Modules for Experiments in Stellar Astrophysics (MESA)

TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as mentioned in this paper is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics.
Journal ArticleDOI

X-Ray Properties of Black-Hole Binaries

TL;DR: In this paper, the authors review the properties and behavior of 20 X-ray binaries that contain a dynamically confirmed black hole, 17 of which are transient systems, during the past decade, many of these transien...
Journal ArticleDOI

How Massive Single Stars End Their Life

TL;DR: In this article, the authors discuss how metallicity affects the evolution and final fate of massive stars, and derive the relative populations of stellar populations as a function of metallity.
Journal ArticleDOI

The Supernova Gamma-Ray Burst Connection

TL;DR: In this article, it was shown that most long-duration soft-spectrum gamma-ray bursts are accompanied by massive stellar explosions (GRB-SNe) and that most of the energy in the explosion is contained in nonrelativistic ejecta (producing the supernova) rather than in the relativistic jets responsible for making the burst and its afterglow.
Journal ArticleDOI

Progenitors of Core-Collapse Supernovae

TL;DR: In this article, the authors reviewed the recent progress in finding the progenitors of core-collapse supernovae and the physical mechanism of the explosion. But they did not discuss the physical mechanisms of the supernova explosion.
References
More filters
Journal ArticleDOI

Abundances of the elements: Meteoritic and solar

TL;DR: In this article, new abundance tables have been compiled for C1 chondrites and the solar photosphere and corona, based on a critical review of the literature to mid-1988.
MonographDOI

Black Holes, White Dwarfs, and Neutron Stars

TL;DR: In this paper, the soft file of a book collection of black holes white dwarfs and neutron stars can be downloaded and the book can be found on-line in this site.
Journal ArticleDOI

The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis

TL;DR: In this paper, the nucleosynthetic yield of isotopes lighter than A = 66 (zinc) is determined for a grid of stellar masses and metallicities including stars of 11, 12, 13, 15, 18, 19, 20, 22, 25, 30, 35, and 40 M{sub {circle_dot}} and metals Z = 0, 10{sup {minus}4}, 0.01, 0.1, and 1 times solar (a slightly reduced mass grid is employed for non-solar metallicities).
Journal ArticleDOI

Synthesis of the Elements in Stars

TL;DR: In this article, a count of the stable and radioactive elements and isotopes is given, and Table I,1 shows that only promethium has not been found in nature, whereas 99 elements are found terrestrially and technetium is found in stars.
Related Papers (5)