scispace - formally typeset
Open AccessJournal ArticleDOI

The role of the airline transportation network in the prediction and predictability of global epidemics

TLDR
A stochastic computational framework for the forecast of global epidemics that considers the complete worldwide air travel infrastructure complemented with census population data and defines a set of quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern.
Abstract
The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large-scale heterogeneities and unbounded statistical fluctuations. These features affect dramatically the behavior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this article, we present a stochastic computational framework for the forecast of global epidemics that considers the complete worldwide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: (i) we study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; and (ii) we evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticity of disease transmission and traffic flows. To address these issues we define a set of quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern. These measures may be used for the analysis of containment policies and epidemic risk assessment.

read more

Citations
More filters
Journal ArticleDOI

Epidemic processes in complex networks

TL;DR: A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear.
Journal ArticleDOI

Structure and tie strengths in mobile communication networks

TL;DR: It is found that, when it comes to information diffusion, weak and strong ties are both simultaneously ineffective, and this coupling significantly slows the diffusion process, resulting in dynamic trapping of information in communities.
Journal ArticleDOI

Graph Signal Processing: Overview, Challenges, and Applications

TL;DR: An overview of core ideas in GSP and their connection to conventional digital signal processing are provided, along with a brief historical perspective to highlight how concepts recently developed build on top of prior research in other areas.
Journal ArticleDOI

Multiscale mobility networks and the spatial spreading of infectious diseases

TL;DR: In this paper, the authors study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatio-temporal pattern of a global epidemic.
References
More filters
Journal ArticleDOI

Statistical mechanics of complex networks

TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Journal ArticleDOI

Epidemic Spreading in Scale-Free Networks

TL;DR: A dynamical model for the spreading of infections on scale-free networks is defined, finding the absence of an epidemic threshold and its associated critical behavior and this new epidemiological framework rationalizes data of computer viruses and could help in the understanding of other spreading phenomena on communication and social networks.
Journal ArticleDOI

The architecture of complex weighted networks

TL;DR: This work studies the scientific collaboration network and the world-wide air-transportation network, which are representative examples of social and large infrastructure systems, respectively, and defines appropriate metrics combining weighted and topological observables that enable it to characterize the complex statistical properties and heterogeneity of the actual strength of edges and vertices.
Journal ArticleDOI

Evolution of networks

TL;DR: The recent rapid progress in the statistical physics of evolving networks is reviewed, and how growing networks self-organize into scale-free structures is discussed, and the role of the mechanism of preferential linking is investigated.