scispace - formally typeset
Open AccessJournal ArticleDOI

THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS*

TLDR
In this article, the authors studied the properties of giant star-forming clumps in five z ~ 2 star forming disks with deep SINFONI AO spectroscopy at the ESO VLT.
Abstract
We have studied the properties of giant star-forming clumps in five z ~ 2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad Hα/[N II] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km s–1 kpc–1, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.

read more

Citations
More filters
Journal ArticleDOI

Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Journal ArticleDOI

Star Formation in the Milky Way and Nearby Galaxies

TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Journal ArticleDOI

The CO-to-H2 Conversion Factor

TL;DR: In this article, the authors review the theoretical underpinning, techniques, and results of efforts to estimate the CO-to-H2 conversion factor in different environments, and recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty.
Journal ArticleDOI

Overview of the SDSS-IV MaNGA Survey: Mapping nearby Galaxies at Apache Point Observatory

Kevin Bundy, +71 more
TL;DR: MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) as mentioned in this paper employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers).
Journal ArticleDOI

Cool Gas in High-Redshift Galaxies

TL;DR: In the last decade, observations of the cool interstellar medium (ISM) in distant galaxies via molecular and atomic fine structure line (FSL) emission have gone from a curious look into a few extreme, rare objects to a mainstream tool for studying galaxy formation out to the highest redshifts as mentioned in this paper.
References
More filters
Journal ArticleDOI

Galactic stellar and substellar initial mass function

TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Journal ArticleDOI

Star formation in galaxies along the hubble sequence

TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Book

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

TL;DR: In this paper, a comparison of theory with observations internal dynamics of gaseous nebulae interstellar dust H II regions in the galactic context is presented. But the results are limited to the case of active galactic nuclei.
Journal ArticleDOI

The Global Schmidt law in star forming galaxies

TL;DR: In this paper, the Schmidt law was used to model the global star formation law over the full range of gas densities and star formation rates observed in galaxies, and the results showed that the SFR scales with the ratio of the gas density to the average orbital timescale.
Related Papers (5)