scispace - formally typeset
Journal ArticleDOI

Triphenylamine-Thienylenevinylene Hybrid Systems with Internal Charge Transfer as Donor Materials for Heterojunction Solar Cells

Reads0
Chats0
TLDR
Star-shaped molecules based on a triphenylamine core derivatized with various combinations of thienylenevinylene conjugated branches and electron-withdrawing indanedione or dicyanovinyl groups have been synthesized, showing that the introduction of the electron-acceptor groups induces an intramolecular charge transfer that results in a shift of the absorption onset toward longer wavelengths and a quenching of photoluminescence.
Abstract
Star-shaped molecules based on a triphenylamine core derivatized with various combinations of thienylenevinylene conjugated branches and electron-withdrawing indanedione or dicyanovinyl groups have been synthesized. UV−vis absorption and fluorescence emission data show that the introduction of the electron-acceptor groups induces an intramolecular charge transfer that results in a shift of the absorption onset toward longer wavelengths and a quenching of photoluminescence. Cyclic voltammetry shows that all compounds present a reversible first oxidation process whose potential increases with the number of electron-withdrawing groups in the structure. Prototype bulk and bilayer heterojunction solar cells have been realized using fullerene C60 derivatives as acceptor material. The results obtained with both kinds of devices show that the introduction of electron-acceptor groups in the donor structure induces an extension of the photoresponse in the visible spectral region, an increase of the maximum external...

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Small molecule organic semiconductors on the move: promises for future solar energy technology.

TL;DR: On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade.
Journal ArticleDOI

Small molecule semiconductors for high-efficiency organic photovoltaics

TL;DR: This review summarizes the developments in small molecular donors, acceptors, and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs and focuses on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances.
Journal ArticleDOI

Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications.

TL;DR: Dithieno[3,2-b:2′3′-d]thiophene-4,4-dioxides 1221 3.3.1.
Journal ArticleDOI

The energy of charge-transfer states in electron donor-acceptor blends : insight into the energy losses in organic solar cells

TL;DR: In this article, a general experimental method to determine the energy ECT of intermolecular charge transfer (CT) states in electron donor-acceptor (D-A) blends from ground state absorption and electrochemical measurements is proposed.
Journal ArticleDOI

Small Molecule Solution-Processed Bulk Heterojunction Solar Cells†

TL;DR: The major classes of molecular donors have been reported in the literature in the past several years and highlights some of key considerations in molecular heterojunction design compared to polymer-based bulk heterojunctions as mentioned in this paper.
References
More filters
Journal ArticleDOI

High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends

TL;DR: In this article, the authors report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene.
Journal ArticleDOI

Organic Thin Film Transistors for Large Area Electronics

TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Journal ArticleDOI

Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology

TL;DR: By applying specific fabrication conditions summarized in the Experimental section and post-production annealing at 150°C, polymer solar cells with power-conversion efficiency approaching 5% were demonstrated.
Journal ArticleDOI

Photoinduced electron transfer from a conducting polymer to buckminsterfullerene.

TL;DR: Because the photoluminescence in the conducting polymer is quenched by interaction with C60, the data imply that charge transfer from the excited state occurs on a picosecond time scale.
Journal ArticleDOI

Plastic Solar Cells

TL;DR: In this article, the photo-induced electron transfer leads to a number of potentially interesting applications, which include sensitization of the photoconductivity and photovoltaic phenomena, and their potential in terrestrial solar energy conversion discussed.
Related Papers (5)