scispace - formally typeset
Open AccessJournal ArticleDOI

Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B

TLDR
It is demonstrated that two different peptide hormones, or cytokines, stimulate the human immunodeficiency virus enhancer, and this effect is mediated by nuclear factor (NF) kappa B (nuclear factor that binds the kappa immunoglobulin light chain gene enhancer); this link between binding at the surface membrane and stimulation of a specific transcription factor should help define intermediates for these cytokine activation pathways.
Abstract
Binding of peptide hormones to surface membrane receptors leads to the transcription of specific genes within relevant target cells. How these signals are transduced to alter gene expression is largely unknown, but this mechanism probably involves a sequence of enzymatic steps that activate factors in the nucleus that modulate transcription. We now demonstrate that two different peptide hormones, or cytokines, stimulate the human immunodeficiency virus enhancer, and this effect is mediated by nuclear factor (NF) kappa B (nuclear factor that binds the kappa immunoglobulin light chain gene enhancer). These cytokines, tumor necrosis factor alpha and interleukin 1, act on multiple cell types and represent the only naturally occurring activators of this transcription factor among eight cytokines examined. Although NF-kappa B binding can be stimulated by phorbol 12-myristate 13-acetate, tumor necrosis factor alpha acts through an independent mechanism, inducing NF-kappa B binding in HT-2 cells, which did not show increased binding in response to phorbol 12-myristate 13-acetate, and causing superinduction in Jurkat T-lymphoma cells. Tumor necrosis factor alpha is also a more selective activator of T cells than phorbol 12-myristate 13-acetate, having no effect on lymphokine production in EL-4 cells at the same time it induces NF-kappa B. These findings suggest that human immunodeficiency virus gene expression can be induced in T cells without activating lymphokine secretion and that the role of these cytokines in the activation of latent human immunodeficiency virus infection deserves further clinical evaluation. Finally, this link between binding at the surface membrane and stimulation of a specific transcription factor should help define intermediates for these cytokine activation pathways.

read more

Citations
More filters
Journal ArticleDOI

Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1.

TL;DR: It is shown that micromolar concentrations of H2O2 can induce the expression and replication of HIV‐1 in a human T cell line and suggests that diverse agents thought to activate NF‐kappa B by distinct intracellular pathways might all act through a common mechanism involving the synthesis of ROI.
Journal ArticleDOI

Activators and target genes of Rel/NF-kappaB transcription factors.

TL;DR: It is argued that NF-κB functions more generally as a central regulator of stress responses and pairing stress responsiveness and anti-apoptotic pathways through the use of a common transcription factor may result in increased cell survival following stress insults.
Journal ArticleDOI

TRADD–TRAF2 and TRADD–FADD Interactions Define Two Distinct TNF Receptor 1 Signal Transduction Pathways

TL;DR: It is shown that TRADD directly interacts with TRAF2 and FADD, signal transducers that activate NF-kappa B and induce apoptosis, respectively, and these two TNFR1-TRADD signaling cascades appear to bifurcate at TRADD.
Journal ArticleDOI

Dissection of TNF Receptor 1 Effector Functions: JNK Activation Is Not Linked to Apoptosis While NF-κB Activation Prevents Cell Death

TL;DR: This work investigated how TNFR1 activates different effector functions; the protein kinase JNK, transcription factor NF-kappaB, and apoptosis, finding that the three responses are mediated through separate pathways.
Journal ArticleDOI

The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation

Hailing Hsu, +2 more
- 19 May 1995 - 
TL;DR: The discovery of a novel 34 kDa protein, designated TRADD, that specifically interacts with an intracellular domain of TNFR1 known to be essential for mediating programmed cell death shows that the signaling pathways for TNF-induced cell death and NF-κB activation are distinct.
References
More filters
Journal ArticleDOI

Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays

TL;DR: A tetrazolium salt has been used to develop a quantitative colorimetric assay for mammalian cell survival and proliferation and is used to measure proliferative lymphokines, mitogen stimulations and complement-mediated lysis.
Journal ArticleDOI

Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei

TL;DR: A procedure for preparing extracts from nuclei of human tissue culture cells that directs accurate transcription initiation in vitro from class II promoters, including tRNA and Ad 2 VA, is developed.
Journal ArticleDOI

Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.

TL;DR: A series of recombinant genomes which directed expression of the enzyme chloramphenicol acetyltransferase (CAT) in mammalian cells provided a uniquely convenient system for monitoring the expression of foreign DNAs in tissue culture cells.
Journal ArticleDOI

Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia

TL;DR: Protection against shock, vital organ dysfunction, persistent stress hormone release and death was conferred by administration of antibodies 2 h before bacterial infusion, indicating that cachectin is a mediator of fatal bacteraemic shock and suggesting that antibodies against Cachectin offer a potential therapy of life-threatening infection.
Journal ArticleDOI

Multiple nuclear factors interact with the immunoglobulin enhancer sequences.

TL;DR: In this paper, an electrophoretic mobility shift assay with end-labeled DNA fragments was used to characterize proteins that bind to the immunoglobulin (Ig) heavy chain and the kappa light chain enhancers.
Related Papers (5)