scispace - formally typeset
Journal ArticleDOI

Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding

TLDR
One-dimensional ANFs were designed as the intermolecular cross-linker between d-Ti3C2Tx flakes and MXene and exhibited excellent mechanical properties and superior electrical conductivity and showed potential application prospects as an advanced composite in sensitive electronic products.
Abstract
MXenes, new two-dimensional compounds with hydrophilic surfaces and high metallic conductivity, have attracted significant interest in the electromagnetic interference shielding field in recent years. Nevertheless, poor mechanical properties and brittle nature are bottlenecks for their commercial application. Herein, one-dimensional ANFs were designed as the intermolecular cross-linker between d-Ti3C2Tx flakes and MXene (d-Ti3C2Tx)/aramid nanofiber (ANF) composite paper with a multi-layered structure was fabricated via the vacuum-assisted filtration approach. Further investigation revealed that the ANFs and MXene displayed good combination by hydrogen bonding, and MXene/ANF composite papers exhibited excellent mechanical properties and superior electrical conductivity. The MXene/ANF composite paper possessed a favorable shielding effectiveness (SE) which reached ∼28 dB in 8.2-12.4 GHz (X band) with an ultra-thin thickness ∼17 μm and showed potential application prospects as an advanced composite in sensitive electronic products.

read more

Citations
More filters
Journal ArticleDOI

Scalable Manufacturing of Free‐Standing, Strong Ti 3 C 2 T x MXene Films with Outstanding Conductivity

TL;DR: A scalable method is shown for the fabrication of strong and highly conducting pure MXene films containing highly aligned large MXene flakes that provide an effective route for producing large-area, high-strength, and high-electrical-conductivity MXene-based films for future electronic applications.
Journal ArticleDOI

Ultraflexible and Mechanically Strong Double-Layered Aramid Nanofiber-Ti3C2Tx MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding.

TL;DR: The results indicate that the double-layered nanocomposite papers have excellent potential for high-performance EMI shielding and thermal management applications in aerospace, military and artificial intelligence, smart and wearable electronics.
Journal ArticleDOI

MXenes for polymer matrix electromagnetic interference shielding composites: A review

TL;DR: In this paper, the basic performances of two-dimensional layered transition metal carbides, nitride or carbonitrides (MXenes), as well as their precursor MAX are introduced and the influences of different precursor MAX and fabrication methods on the structures and properties of MXenes are summarized.
References
More filters
Journal ArticleDOI

Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti 3 AlC 2

TL;DR: 2D nanosheets, composed of a few Ti 3 C 2 layers and conical scrolls, produced by the room temperature exfoliation of Ti 3 AlC 2 in hydrofl uoric acid are reported, which opens a door to the synthesis of a large number of other 2D crystals.
Journal ArticleDOI

The hydrogen bond in the solid state.

TL;DR: The hydrogen bond is the most important of all directional intermolecular interactions, operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological.
Journal ArticleDOI

Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance

TL;DR: This capacitance report reports a method of producing two-dimensional titanium carbide ‘clay’ using a solution of lithium fluoride and hydrochloric acid that offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
Journal ArticleDOI

Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Journal ArticleDOI

Two-dimensional transition metal carbides.

TL;DR: Evidence is presented for the exfoliation of the following MAX phases by the simple immersion of their powders, at room temperature, in HF of varying concentrations for times varying between 10 and 72 h followed by sonication.
Related Papers (5)