scispace - formally typeset
Open AccessProceedings ArticleDOI

UPSNet: A Unified Panoptic Segmentation Network

Reads0
Chats0
TLDR
UPSNet as mentioned in this paper proposes a unified panoptic segmentation network to solve the problem of conflicts between semantic and instance segmentation by combining a deformable convolution based head and a Mask R-CNN style instance head.
Abstract
In this paper, we propose a unified panoptic segmentation network (UPSNet) for tackling the newly proposed panoptic segmentation task. On top of a single backbone residual network, we first design a deformable convolution based semantic segmentation head and a Mask R-CNN style instance segmentation head which solve these two subtasks simultaneously. More importantly, we introduce a parameter-free panoptic head which solves the panoptic segmentation via pixel-wise classification. It first leverages the logits from the previous two heads and then innovatively expands the representation for enabling prediction of an extra unknown class which helps better resolving the conflicts between semantic and instance segmentation. Besides, it handles the challenge caused by the varying number of instances and permits back propagation to the bottom modules in an end-to-end manner. Extensive experimental results on Cityscapes, COCO and our internal dataset demonstrate that our UPSNet achieves state-of-the-art performance with much faster inference. Code has been made available at: https://github.com/uber-research/UPSNet

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

End-to-End Object Detection with Transformers

TL;DR: This work presents a new method that views object detection as a direct set prediction problem, and demonstrates accuracy and run-time performance on par with the well-established and highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset.
Book ChapterDOI

End-to-End Object Detection with Transformers

TL;DR: DetR as mentioned in this paper proposes a set-based global loss that forces unique predictions via bipartite matching, and a transformer encoder-decoder architecture to directly output the final set of predictions in parallel.
Book ChapterDOI

Object-Contextual Representations for Semantic Segmentation

TL;DR: This paper addresses the semantic segmentation problem with a focus on the context aggregation strategy, and presents a simple yet effective approach, object-contextual representations, characterizing a pixel by exploiting the representation of the corresponding object class.
Posted Content

Image Segmentation Using Deep Learning: A Survey

TL;DR: A comprehensive review of recent pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings are provided.
Journal ArticleDOI

Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges

TL;DR: In this article, the authors systematically summarize methodologies and discuss challenges for deep multi-modal object detection and semantic segmentation in autonomous driving and provide an overview of on-board sensors on test vehicles, open datasets, and background information for object detection.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Book ChapterDOI

Microsoft COCO: Common Objects in Context

TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Proceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Posted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Related Papers (5)