scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Posted Content

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

TL;DR: A hierarchical neural network that applies PointNet recursively on a nested partitioning of the input point set and proposes novel set learning layers to adaptively combine features from multiple scales to learn deep point set features efficiently and robustly.
Proceedings ArticleDOI

Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

TL;DR: This paper presents the first convolutional neural network capable of real-time SR of 1080p videos on a single K2 GPU and introduces an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output.
Proceedings ArticleDOI

V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

TL;DR: In this article, a volumetric, fully convolutional neural network (FCN) was proposed to predict segmentation for the whole volume at one time, which can deal with situations where there is a strong imbalance between the number of foreground and background voxels.
Proceedings ArticleDOI

ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

TL;DR: ShuffleNet as discussed by the authors utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy, and achieves an actual speedup over AlexNet while maintaining comparable accuracy.
Posted Content

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

TL;DR: SRGAN, a generative adversarial network (GAN) for image super-resolution (SR), is presented, to its knowledge, the first framework capable of inferring photo-realistic natural images for 4x upscaling factors and a perceptual loss function which consists of an adversarial loss and a content loss.
References
More filters
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Posted Content

Fully Convolutional Networks for Semantic Segmentation

TL;DR: It is shown that convolutional networks by themselves, trained end- to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation.
Journal ArticleDOI

Backpropagation applied to handwritten zip code recognition

TL;DR: This paper demonstrates how constraints from the task domain can be integrated into a backpropagation network through the architecture of the network, successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service.
Journal ArticleDOI

The Pascal Visual Object Classes Challenge: A Retrospective

TL;DR: A review of the Pascal Visual Object Classes challenge from 2008-2012 and an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
Related Papers (5)