scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Book ChapterDOI

Less is More: Towards Compact CNNs

TL;DR: This work shows that, by incorporating sparse constraints into the objective function, it is possible to decimate the number of neurons during the training stage, thus theNumber of parameters and the memory footprint of the neural network are reduced, which is desirable at the test time.
Journal ArticleDOI

Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives.

TL;DR: A comparative assessment of DL tools against other existing techniques, with respect to decision accuracy, data size requirement, and applicability in various scenarios is provided.
Posted Content

Interpretable 3D Human Action Analysis with Temporal Convolutional Networks

TL;DR: In this paper, a new class of models known as Temporal Convolutional Neural Networks (TCN) is proposed to explicitly learn readily interpretable spatio-temporal representations for 3D human action recognition.
Book ChapterDOI

ExFuse: Enhancing Feature Fusion for Semantic Segmentation

TL;DR: A new framework, named ExFuse, is proposed to bridge the gap between low-level and high-level features and significantly improve the segmentation quality, which outperforms the previous state-of-the-art results.
Journal ArticleDOI

COVID-19 Detection through Transfer Learning Using Multimodal Imaging Data

TL;DR: This study demonstrates how transfer learning from deep learning models can be used to perform COVID-19 detection using images from three most commonly used medical imaging modes X-Ray, Ultrasound, and CT scan to provide over-stressed medical professionals a second pair of eyes through intelligent deep learning image classification models.
References
More filters
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Posted Content

Fully Convolutional Networks for Semantic Segmentation

TL;DR: It is shown that convolutional networks by themselves, trained end- to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation.
Journal ArticleDOI

Backpropagation applied to handwritten zip code recognition

TL;DR: This paper demonstrates how constraints from the task domain can be integrated into a backpropagation network through the architecture of the network, successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service.
Journal ArticleDOI

The Pascal Visual Object Classes Challenge: A Retrospective

TL;DR: A review of the Pascal Visual Object Classes challenge from 2008-2012 and an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
Related Papers (5)