scispace - formally typeset
Open AccessProceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TLDR
This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

read more

Citations
More filters
Proceedings Article

Fixed point quantization of deep convolutional networks

TL;DR: This paper proposes a quantizer design for fixed point implementation of DCNs, formulate and solve an optimization problem to identify optimal fixed point bit-width allocation across DCN layers, and demonstrates that fine-tuning can further enhance the accuracy of fixed point DCNs beyond that of the original floating point model.
Proceedings ArticleDOI

Learning Deep Structure-Preserving Image-Text Embeddings

TL;DR: In this article, a two-branch neural network with multiple layers of linear projections followed by nonlinearities is trained using a largemargin objective that combines cross-view ranking constraints with within-view neighborhood structure preservation constraints inspired by metric learning.
Book ChapterDOI

Memory Aware Synapses: Learning What (not) to Forget

TL;DR: This paper argues that, given the limited model capacity and the unlimited new information to be learned, knowledge has to be preserved or erased selectively and proposes a novel approach for lifelong learning, coined Memory Aware Synapses (MAS), which computes the importance of the parameters of a neural network in an unsupervised and online manner.
Journal ArticleDOI

Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data

TL;DR: In this paper, the authors propose sparse ternary compression (STC), a new compression framework that is specifically designed to meet the requirements of the federated learning environment, which extends the existing compression technique of top- $k$ gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates.
Posted Content

Delving into Transferable Adversarial Examples and Black-box Attacks

TL;DR: In this paper, Xu et al. proposed novel ensemble-based approaches to generate transferable adversarial examples, and observed a large proportion of targeted adversarial instances that are able to transfer with their target labels for the first time.
References
More filters
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Posted Content

Fully Convolutional Networks for Semantic Segmentation

TL;DR: It is shown that convolutional networks by themselves, trained end- to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation.
Journal ArticleDOI

Backpropagation applied to handwritten zip code recognition

TL;DR: This paper demonstrates how constraints from the task domain can be integrated into a backpropagation network through the architecture of the network, successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service.
Journal ArticleDOI

The Pascal Visual Object Classes Challenge: A Retrospective

TL;DR: A review of the Pascal Visual Object Classes challenge from 2008-2012 and an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
Related Papers (5)