scispace - formally typeset
Open AccessJournal ArticleDOI

XMM-Newton reveals a candidate period for the spin of the “Magnificent Seven” neutron star RX J1605.3+3249

Reads0
Chats0
TLDR
In this article, the authors used phase-resolved spectroscopy with the XMM-Newton Observatory for 60 ks aiming at unveiling the neutron star rotation rate and investigating its spectrum in detail.
Abstract
Context. The group of seven thermally emitting isolated neutron stars (INSs) discovered by ROSAT and known as the “Magnificent Seven” (M7) is unique among the various neutron star populations. Crustal heating by means of magnetic field decay and an evolutionary link with magnetars may explain why these objects rotate more slowly and have higher thermal luminosities and magnetic field intensities than standard rotation-powered pulsars of similar age. Aims. The third brightest INS, RX J1605.3+3249, is the only object amidst the seven still lacking a detected periodicity. The source spectrum, while purely thermal with no significant magnetospheric emission, is complex and displays both narrow and broad absorption features that can potentially be used to constrain the surface component of the magnetic field, as well as the mass-to-radius ratio of the neutron star. Methods. We observed the source with the XMM-Newton Observatory for 60 ks aiming at unveiling the neutron star rotation rate and investigating its spectrum in detail. We confront our results with previous observations of the source and discuss its properties in the context of the M7 as a group and of the known population of Galactic INSs. Results. A periodic signal at P = 3.387864(16) s, most likely the neutron star spin period, is detected at the 4σ confidence level. The amplitude of the modulation was found to be energy dependent and is more significantly detected when the timing search is restricted to photons with energy higher than ∼0.5 keV. The coherent combination of the new data with a past XMM-Newton EPIC-pn observation of the source constrains the pulsar spin-down rate at the 2σ confidence level, u ν ∼− 1.39 × 10 −13 Hz s −1 , implying a dipolar magnetic field of Bdip ∼ 7.4 × 10 13 G. If confirmed, RX J1605.3+3249 would be the neutron star with the highest dipolar field amongst the M7. The spectrum of the source shows evidence of a cool blackbody component, as well as for the presence of two broad absorption features. Furthermore, high-resolution spectroscopy with the RGS cameras confirms the presence of a narrow absorption feature at energy ∼0.57 keV in the co-added spectrum of the source, also seen in other thermally emitting isolated neutron stars. Conclusions. Phase-resolved spectroscopy, as well as a dedicated observing campaign aimed at determining a timing solution, will give invaluable constraints on the neutron star geometry and will allow one to confirm the high value of spin down, which would place the source closer to a magnetar than any other M7 INS.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

XMM-Newton observatory*: I. The spacecraft and operations. Commentary

TL;DR: The XMM-Newton Observatory is a cornerstone mission of the European Space Agency's Horizon 2000 programme, and is the largest scientific satellite it has launched to date as mentioned in this paper, which has been enabled by the unprecedentedly large effective area of the three mirror modules, which are briefly described.
Journal ArticleDOI

Observational diversity of magnetized neutron stars.

TL;DR: An introductory review for non-astrophysicists about the observational properties of highly-magnetized NSs, and how the five fundamental quantities of NSs change with evolution of, and vary depending on the class of, the NSs is presented.
Journal ArticleDOI

Polarized thermal emission from X-ray dim isolated neutron stars: the case of RX J1856.5−3754

TL;DR: In this paper, the polarization properties of thermal radiation from isolated, cooling neutron stars depend on both the emission processes at the surface and the effects of the magnetized vacuum which surrounds the star.
References
More filters
Journal ArticleDOI

H I in the Galaxy

TL;DR: In this paper, a synthese sur l'hydrogene dans la Galaxie traitant des observations a 21 cm, des observations UV, des traceurs indirectes de HI, and de sa structure verticale.
Journal ArticleDOI

On the Absorption of X‐Rays in the Interstellar Medium

TL;DR: In this paper, an improved model for the absorption of X-rays in the interstellar medium (ISM) is presented for use with data from future X-ray missions with larger effective areas and increased energy resolution such as Chandra and the X-Ray Multiple Mirror mission.
Journal ArticleDOI

The Australia Telescope National Facility Pulsar Catalogue

TL;DR: A new and complete catalog of the main properties of the 1509 pulsars for which published information currently exists, which includes all spin-powered pulsars, as well as anomalous X-ray pulsars and soft gamma-ray repeaters showing coherent pulsed emission.
Journal ArticleDOI

The ATNF Pulsar Catalogue

TL;DR: In this paper, the authors search the literature to find papers announcing the discovery of pulsars or giving improved parameters for them, and then they enter these papers' data into a new pulsar catalogue that can be accessed via a web interface or from the command line (on Solaris or Linux machines).
Related Papers (5)